Age-of-Information-based Scheduling in Multiuser Uplinks with Stochastic Arrivals: A POMDP Approach

Aoyu Gong¹, Tong Zhang², He Chen², and Yijin Zhang¹

¹School of Electronic and Optical Engineering Nanjing University of Science and Technology (NJUST)

²Department of Information Engineering The Chinese University of Hong Kong (CUHK)

IEEE Global Communications Conference 2020

Background

- The information freshness has become an increasingly important performance metric in this era of the Internet of Things (IoT).
- The concept of the age of information (Aol) has been proposed to measure the information freshness from the monitor's perspective.
- In this paper, we focus on scheduling problems of minimizing the network-wide AoI in multiuser uplinks with stochastic arrivals.

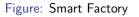


Figure: Smart Healthcare

Figure: Smart Transport

Multiuser Downlinks with Stochastic Arrivals

• There is no uncertainty about the status update arrivals from the monitor's perspective since status updates arrive at the monitor.

What about multiuser uplinks with stochastic arrivals?

Weakness of Existing Work

- Most existing work assumed end nodes used extra feedback to report their status update arrivals to the monitor.
- Such feedback leads to considerable overhead and thus makes the corresponding scheduling policies hard to implement.

To combat this weakness, we assume that **there is no extra feedback**, which leads to a scheduling problem under **partial system information**.

System Model - I

- We consider a multiuser uplink system where K end nodes report their freshest status updates to a common monitor.
- In each time slot, a new status update arrives at end node $i \in \{1, 2, ..., K\}$ with probability $\lambda_i \in (0, 1]$.

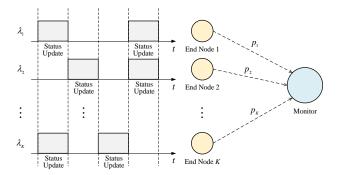


Figure: The multiuser uplink system with stochastic arrivals of status updates.

Aoyu Gong (NJUST)

System Model - II

- At the beginning of each time slot, the monitor schedules at most one end node to transmit its freshest status update.
- The transmission of end node *i* to the monitor has a successful probability p_i and an error probability $(1 p_i)$.

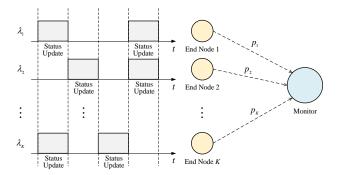


Figure: The multiuser uplink system with stochastic arrivals of status updates.

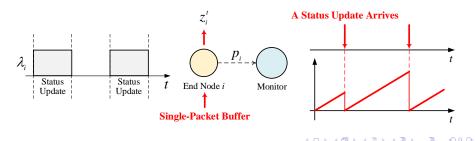
Aoyu Gong (NJUST)

Local Age

Local Age

- Define the local age of end node *i* as the time elapsed since the generation of the freshest status update at end node *i*.
- The evolution of the local age of end node *i*, denoted by z_i^t , is

$$z_i^{t+1} = egin{cases} z_i^t + 1, & ext{no status update arrives in slot } t, \ 1, & ext{a new status update arrives in slot } t. \end{cases}$$



(1)

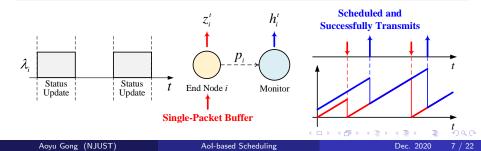
Age of Information

Age of Information

- Define the age of information (AoI) of end node *i* as the time elapsed since the generation (at end node *i*) of the latest received status update (at the monitor).
- The evolution of **the Aol of end node** *i*, denoted by h_i^t , is

 $h_i^{t+1} = \begin{cases} z_i^t + 1, & \text{scheduled and successfully transmits in slot } t \\ h_i^t + 1, & \text{otherwise.} \end{cases}$

(2)



Weakness of Existing Work

- Most existing work assumed end nodes used extra feedback to report their status update arrivals to the monitor.
- Such feedback leads to considerable overhead and thus makes the corresponding scheduling policies hard to implement.

To combat this weakness, we assume that **there is no extra feedback**, which leads to a scheduling problem under **partial system information**.

Main Contributions

- Formulate a partially observable Markov decision process (POMDP) to characterize the dynamic behavior of such system.
- Use a dynamic programming (DP) algorithm to attain the optimal policy and devise a myopic policy with low computation complexity.

A POMDP models an agent decision process in which it is assumed that

- the system dynamics are determined by an MDP, and
- the agent cannot directly observe the underlying state.

Definition

A POMDP can be described as a tuple < S, A, O, T, R, Z >.

- \mathcal{S} is a finite set of states.
- \mathcal{A} is a finite set of actions.
- \mathcal{O} is a finite set of observations.
- T is the state transition function, $T : S \times A \rightarrow \Pi(S)$.
- R is the reward function, $R: S \times A \rightarrow \mathbb{R}$.
- Z is the observation function, $Z : S \times A \rightarrow \Pi(O)$.

POMDP Formulation - I

States

- Denote a state of end node *i* in slot *t* by $\mathbf{s}_i^t \triangleq [h_i^t, z_i^t]$.
 - *h*^t_i ∈ *T* ≜ {1,2,3,...} is its instantaneous AoI at the monitor
 z^t_i ∈ *T* is its local age

• Denote a state of the POMDP in slot t by $\mathbf{s}^t \triangleq [\mathbf{h}^t, \mathbf{z}^t]$.

- $\mathbf{h}^t \triangleq [h_1^t, \dots, h_K^t] \in \mathcal{H} = \mathcal{T}^K$ is the Aol of all end nodes
- $\mathbf{z}^t \triangleq [z_1^t, \dots, z_K^t] \in \mathcal{Z} = \mathcal{T}^K$ is the local age of all end nodes

Actions

- Denote an action of end node *i* in slot *t* by $a_i^t \in \{0, 1\}$.
 - If end node *i* is scheduled, $a_i^t = 1$; otherwise, $a_i^t = 0$.
- Denote an action of the POMDP in slot t by $\mathbf{a}^t \triangleq [a_1^t, \dots, a_K^t]$.
 - In the single-antenna system considered, we have $\sum_{i=1}^{K} a_i^t \leq 1$.

(日) (周) (三) (三)

Observations

- Denote an observation of end node *i* in slot *t* by $\mathbf{o}_i^t \triangleq [h_i^t, \hat{z}_i^t]$.
 - h_i^t is its fully observed AoI at the monitor
 - $\hat{z}_i^t \in \{\mathcal{T}, X\}$ is its partially observed local age, where X means no observation of the local age of an end node

• Denote an observation of the POMDP in slot t by $\mathbf{o}^t \triangleq [\mathbf{o}_1^t, \dots, \mathbf{o}_K^t]$.

Belief State

- Denote a belief state of the POMDP in slot t by $\mathbf{I}^t \triangleq [\mathbf{h}^t, \mathbf{b}^t]$.
 - \mathbf{b}^t is a probability distribution over \mathcal{Z} , where $b(\mathbf{z})$ is the probability assigned to $\mathbf{z}^t = \mathbf{z}$ by $\mathbf{b}^t = \mathbf{b}$, satisfying $\sum_{\mathbf{z} \in \mathcal{Z}} b(\mathbf{z}) = 1$.
 - Note that **h**^t is fully observable, i.e., its belief update is always deterministic given **h**^{t-1}, **a**^{t-1} and **o**^{t-1}.

イロト イポト イヨト イヨト

POMDP Formulation - III

State Transition Function

• Let $\Pr(\mathbf{z}'|\mathbf{z}) = \prod_{i=1}^{K} \Pr(z'_i|z_i)$ denote the state transition function.

Observation Function

• Let $\Pr(\mathbf{o}|\mathbf{z}, \mathbf{a}) = \prod_{i=1}^{K} \Pr(\mathbf{o}_i|z_i, a_i)$ denote the observation function.

POMDP Formulation - IV

Belief Update

• When given $\mathbf{I}^t = \mathbf{I}$, $\mathbf{a}^t = \mathbf{a}$ and $\mathbf{o}^t = \mathbf{o}$, for $\forall i, h_i^{t+1}$ can be updated as follows:

$$h_{i}^{t+1} = \begin{cases} \hat{z}_{i} + 1, & \text{if } \hat{z}_{i} \neq X, \\ h_{i} + 1, & \text{if } \hat{z}_{i} = X. \end{cases}$$
(3)

 When given the same condition, for ∀z' ∈ Z, b^{t+1}(z') can be updated via the Bayes' theorem:

$$b^{t+1}(\mathbf{z}') = \left\{ \sum_{\mathbf{z}\in\mathcal{Z}} \Pr(\mathbf{z}'|\mathbf{z})\Pr(\mathbf{o}|\mathbf{z},\mathbf{a})b(\mathbf{z}) \right\} / \Pr(\mathbf{o}|\mathbf{I},\mathbf{a}),$$
(4)

where $\mathsf{Pr}(\mathbf{o}|\mathbf{I}, \mathbf{a}) = \sum_{\mathbf{z} \in \mathcal{Z}} \mathsf{Pr}(\mathbf{o}|\mathbf{z}, \mathbf{a}) b(\mathbf{z}).$

• We denote the process by the update function $\mathbf{I}^{t+1} = f(\mathbf{I}, \mathbf{a}, \mathbf{o})$.

POMDP Formulation - V

Reward

Define the reward at belief state I^t = I as the weighted sum of the instantaneous Aol of all end nodes, i.e., R(I) ≜ ∑_{i=1}^K ω_ih_i.

Policy

- Define a decision rule as a mapping from the belief space \mathcal{I} into the action space \mathcal{A} , i.e., $d_t : \mathcal{I} \to \mathcal{A}$.
- Define a policy as a sequence of decision rules, i.e., $\pi = \{d_1, \ldots, d_T\}$.

Let $V^{\pi}(\mathbf{I})$ denote the expected total reward from slot 1 to slot T when $\mathbf{I}^{1} = \mathbf{I}$ and the policy π is used, which can be defined by

$$V^{\pi}(\mathbf{I}) \triangleq \mathbb{E}\Big[\sum_{t=1}^{T} R(\mathbf{I}^{t}) | \mathbf{I}^{1} = \mathbf{I}, \pi\Big] \rightarrow (\mathsf{P}): \pi^{*} = \arg\min_{\pi} \frac{1}{TK} V^{\pi}(\mathbf{I}).$$

The Optimal Policy

The Total Expected Reward

Let U^π_t(I) denote the total expected reward from slot t to slot T when I^t = I and the policy π is used, which can be defined by

$$U_t^{\pi}(\mathbf{I}) \triangleq \mathbb{E}\Big[\sum_{\tau=t}^T R(\mathbf{I}^{\tau}) | \mathbf{I}^t = \mathbf{I}, \pi\Big] \rightarrow (\mathsf{P}): \pi^* = \arg\min_{\pi} \frac{1}{TK} U_1^{\pi}(\mathbf{I}).$$

Dynamic Programming

• For problem (P), we have the following bellman equation:

$$U_t^*(\mathbf{I}) = R(\mathbf{I}) + \max_{\mathbf{a} \in \mathcal{A}} \sum_{\mathbf{o} \in \mathcal{O}} \Pr(\mathbf{o} | \mathbf{I}, \mathbf{a}) U_{t+1}^*(f(\mathbf{I}, \mathbf{a}, \mathbf{o})),$$
(5)

for each $t \in \{1, \dots, T-1\}$ and $I \in \mathcal{I}_t$.

• The minimal EWSAoI given $I^1 = I$ can be computed by $U_1^*(I)/TK$.

A Myopic Policy - I

Belief State (Sufficient Statistics)

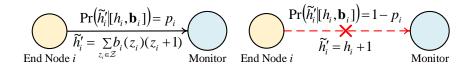
- The monitor can only maintain probability distributions of the local age of each end node, denoted by

 B^t = [b₁^t, b₂^t..., b_K^t].
- The belief state of the POMDP can be redefined as $\mathbb{I}^t \triangleq [\mathbf{h}^t, \mathbb{B}^t]$.

The One-Step Expected Aol

• Denote the expected AoI in the next slot of end node i by $\mathbb{E}(h'_i)$.

•
$$\mathbb{E}(h'_i) = (1-a_i)(h_i+1) + a_i^t \left(p_i \sum_{z_i \in \mathcal{T}} b_i(z_i)(z_i+1) + (1-p_i)(h_i+1) \right)$$



The One-Step Expected Reward

 Given belief state I^t = I, if action a^t = a is chosen in slot t, the one-step expected reward of the POMDP is given by

$$\hat{R}(\mathbb{I}, \mathbf{a}) = \sum_{i=1}^{K} \omega_i \left[(1 - a_i)(h_i + 1) + a_i^t \left(p_i \sum_{z_i \in \mathcal{T}} b_i(z_i)(z_i + 1) + (1 - p_i)(h_i + 1) \right) \right]$$

The Myopic Policy

• Given belief state $\mathbb{I}^t = \mathbb{I}$, the myopic policy can be given by

$$d_t(\mathbb{I}^t) = \arg\min_{\mathbf{a}\in\mathcal{A}} \hat{R}(\mathbb{I}, \mathbf{a}).$$
(6)

< 3 > < 3

Successful Transmission Probability

• The successful transmission probability of end node *i* is computed by

$$p_i = 1 - \Pr(r_i < r_{th}) \stackrel{(a)}{=} \exp\left(-\frac{d_i^{\tau}(2^{r_{th}} - 1)}{\mathsf{SNR}}\right). \tag{7}$$

Benchmarking Policies

- Myopic policy (full knowledge), MPF: Given s^t = s, the monitor schedules end node i^{*} satisfying i^{*} = arg max_{∀i} ω_ip_i(h_i z_i).
- MaxAol policy, MAP: Given h^t = h, the monitor schedules end node i^{*} satisfying i^{*} = arg max_{∀i} ω_ip_ih_i.
- **Randomized policy, RDP**: The monitor schedules end node *i* with probability $\mu_i = \sqrt{\omega_i/p_i}/(\sum_{j=1}^{K} \sqrt{\omega_j/p_j})$, $\forall i$.

(日) (同) (三) (三)

Simulation - II

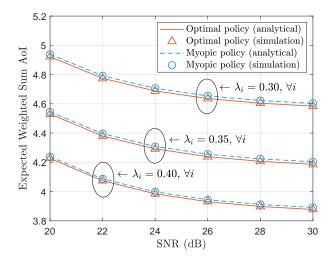


Figure: The EWSAoI as a function of the SNR for different configurations when K = 2, T = 50, D = 15, and $\omega_i = 1$, $\forall i$.

Dec. 2020 19 / 22

Simulation - III

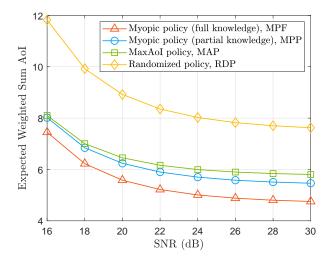


Figure: The EWSAoI as a function of the SNR when K = 5, $T = 10^6$, D = 50, $\lambda_i = 0.4$ and $\omega_i = 1$, $\forall i$.

Simulation - IV

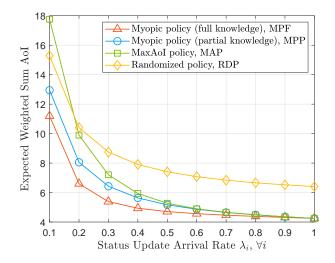


Figure: The EWSAoI as a function of the status update arrival rate when K = 5, $T = 10^6$, D = 50, SNR = 25 dB and $\omega_i = 1$, $\forall i$.

Aoyu Gong (NJUST)

Dec. 2020 21 / 22

System Model

In this paper, we have investigated **age-of-information-based scheduling** in multiuser uplinks with stochastic arrivals.

POMDP Formulation and Solutions

- Formulate a partially observable Markov decision process (POMDP) to characterize the dynamic behavior of such system.
- Use a dynamic programming (DP) algorithm to attain the optimal policy and devise a myopic policy with low computation complexity.

Simulation

The performance of the myopic policy approaches that of the optimal policy and is superior to that of the benchmarking policy.

Image: Image:

- **4 ∃ ≻** 4