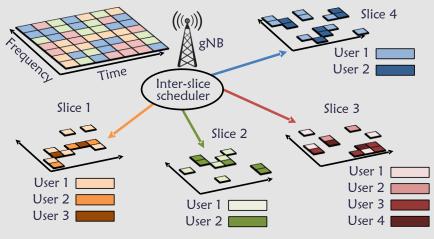
EPFL

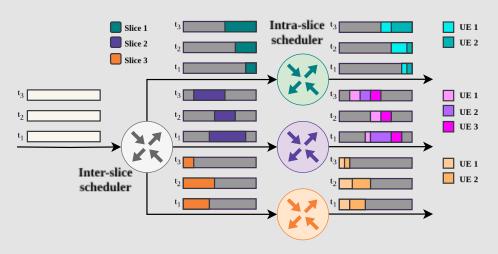

SliceGuard: Secure and Dynamic 5G RAN Slicing with WebAssembly

Laboratory of Sensing and Networking Systems

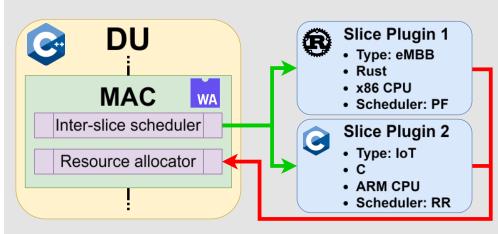
Raphael Cannatà¹, Aoyu Gong¹, Arman Maghsoudnia¹, Dan Mihai Dumitriu², and Haitham Hassanieh¹ ¹EPFL; ²Pavonis LLC

1 Introduction and Background

- **5G RAN Slicing** and its challenges:
 - a) Resource isolation and scheduling of different metrics
 - b) Slice tenants may differ from network operators


■ WebAssembly (WASM): Portability, efficiency, and security

- SliceGuard runs the slice schedulers a WASM modules:
 - a) Easier development in multiple high-level languages
 - b) Unique executable across the network
 - c) On-the-fly update for new components
 - d) Secure and reliable execution of third-party code


2 Two-Level Scheduler

- Two-levels scheduler:
 - a) Inter-slice scheduler: Divides resources among slices
 - b) Intra-slice scheduler: Divides resources among users subscribed to the same slice
- Three types of slices:
 - a) Low latency slices
 - b) Guaranteed bit rate slices
 - c) Best effort slices

3 WASM-Based Scheduler System

- Network operators control the inter-slice scheduler
 - Run the same code across the shared infrastructure
- Slice tenants control the intra-slice scheduler
 - Customize resource allocation within the WASM modules

- Main advantages:
 - + Ensure security between the operators and tenants
 - + Avoid recompiling the entire stack during update rollouts
 - Execute the same code across the whole network
 (Independent of hardware or software)

4 Demonstration

• Our testbed: A cloud gaming server and a 5G system

- Slicing for cloud gaming:
 - Compare single-slice and multi-slice setups
 - Highlight the need for dynamic slicing
- WASM capabilities:
 - Show on-the-fly updates and fault isolation
 - Demonstrate the capabilities of WASM modules

- a) Low Latency (LL) slices:
 - Timestamp packets when placed in queues
 - Reserve resources to meet latency requirements
- b) Guaranteed Bit Rate (GBR) slices:
 - Track throughput with a moving average
 - Compute priority weights using a logistic curve
- c) Best Effort (BE) slices:
 - Assign remaining resources after LL and GBR allocations