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Abstract—This paper considers utilizing the knowledge of age
gains to reduce the average age of information (AoI) in random
access with event-driven periodic updating for the first time.
Built on the form of slotted ALOHA, we require each device
to determine its age gain threshold and transmission probability
in an easily implementable decentralized manner, so that the
contention can be limited to devices with age gains as high as
possible. For the basic case that each device utilizes its knowledge
of age gain of only itself, we provide an analytical modeling by
a multi-layer discrete-time Markov chains (DTMCs), where an
external DTMC manages the jumps between the beginnings of
frames and an internal DTMC manages the evolution during an
arbitrary frame, for obtaining optimal fixed access parameters
offline. For the enhanced case that each device utilizes its
knowledge of age gains of all the devices, we require each device
to adjust its access parameters for maximizing the estimated
network expected AoI reduction per slot, through maintaining
the a posteriori joint probability distribution of local age and
age gain of an arbitrary device in a Bayesian manner. Numerical
results validate our study and demonstrate the advantage of the
proposed schemes over other schemes.

Index Terms—Internet of Things, age of information, periodic
update, random access, slotted ALOHA.

I. INTRODUCTION

A. Background

Internet of Things (IoT) systems have been widely applied
in many real-time services [1]–[3], such as emergency surveil-
lance, target tracking, process control, and so on. In these
services, destinations are interested in the status of one or
multiple processes observed by multiple sources, and then
take necessary actions based on the received status updates.
To ensure the quality and even safety of these services, it
is typically necessary for sources to deliver their generated
updates to the corresponding destinations as timely as possible.

However, such timeliness requirement cannot be charac-
terized adequately by conventional performance metrics (e.g.
throughput and delay). For example, when the throughput is
large, the received updates may not be fresh due to long delay;
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when the delay is small, the received updates may not be
fresh due to infrequent arrivals of updates. As such, a new
performance metric, termed age of information (AoI), has
been introduced in [4] to measure the time elapsed since the
generation moment of the latest successfully received update
at a destination. Naturally, to reduce the network average
AoI (AAoI), it is desirable for multiple access schemes to
assign higher transmission priorities to devices with higher
age gains, where the age gain of a device in a slot quantifies
how much a successful transmission of this device will reduce
its corresponding instantaneous AoI. Note that the age gain
of a device depends on only its instantaneous AoI under the
generate-at-will (GAW) arrival of updates.

With this objective, scheduling schemes that operate in a
centralized manner have been designed to perform close to
optimal network AAoI in various scenarios [5]–[8]. However,
they may be impractical due to the huge overhead of required
coordination, especially when there is considerable uncertainty
on the arrival patterns of updates. Unlike scheduling schemes,
random access schemes (e.g. slotted ALOHA, frame slotted
ALOHA, CSMA) allow a population of devices with limited
or no coordination to dynamically and opportunistically share
a channel. So, it is strongly required to design age-gain-
dependent random access (AGDRA) schemes, where each
device utilizes its knowledge of age gains1 to determine when
to transmit in an easily implementable decentralized manner,
so that the unavoided contention can be limited to devices with
age gains as high as possible.

Various AGDRA schemes have been proposed for the
GAW arrival [10]–[17] and the Bernoulli arrival [18]–[21]
of updates, and have been shown to significantly reduce
the network AAoI compared to conventional random access
schemes. It can be observed from [10]–[21] that designing
AGDRA is uniquely challenging due to the inherent coupling
of the arrival process of updates, the time evolution of local
ages, the time evolution of AoIs, and the time-varying mutual
interference. Generally speaking, this coupling would become
more complicated when a more general arrival process of
updates is considered, and is quite different from that for
optimizing the throughput or delay metric.

B. Related Work
Without relying on the knowledge of age gains, many

conventional random access schemes have been proposed for

1In the language of decision making under uncertainty [9], a knowledge of age
gains is defined as a probability distribution for the age gains of all the devices
based on past decisions, past observations, and an estimation approach.
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minimizing the network AAoI. Under the GAW arrival, [22]
showed that using slotted ALOHA is worse than scheduling
by a factor of about 2e. Under the Bernoulli arrival, [23] used
the elementary renewal theorem to optimize the transmission
probabilities for slotted ALOHA and CSMA, while [24] used
discrete-time Markov chains (DTMCs) to optimize the frame
length for frame slotted ALOHA. Under the periodic ar-
rival, [25] analyzed the effect of maximizing the instantaneous
throughput on the network AAoI of slotted ALOHA.

Basic AGDRA, where each device utilizes its knowledge
of age gain of only itself to adjust its access parameters, has
been investigated in [10]–[16], [18], [21]. In the form of slotted
ALOHA, [10]–[16] assumed that each device adopts a fixed
transmission probability if its corresponding age gain reaches
a fixed threshold, but keeps silent otherwise. Based on a com-
prehensive steady-state analysis of the DTMC defined in [10],
closed-form expressions of the network AAoI and optimal
access parameters were provided in [11] for an infinitely large
network size. For an arbitrary network size, [12] analyzed the
network AAoI by modeling the AoI evolution of each device
as a DTMC, which, however, relies on an ideal assumption
that the states of all the devices are independent of each other.
To mitigate the negative impact of contentions, a reservation
phase ahead of actual data transmission is proposed in [13],
[14], but its benefit comes at the cost of additional overhead
compared to [10]–[12]. Further, [15], [16] used stochastic
geometry tools to derive the network AAoI under the spa-
tiotemporal interference. Note that [10]–[16] mainly focused
on the GAW traffic, except that [11] extended its findings to
obtain an upper bound on the network AAoI for the Bernoulli
arrival. These schemes [10]–[16] have a common advantage
that the access parameters can be obtained offline through
analytical modeling, and thus can be simply implemented. In
addition, heuristic methods proposed in [18], [21] allow each
device to use different transmission probabilities for different
cases, but lack analytical modeling.

To further reduce the network AAoI, enhanced AGDRA,
where each device utilizes its knowledge of age gains of all the
devices to adjust its access parameters, has been investigated
in [19], [20] for the Bernoulli arrival. In the form of slotted
ALOHA, the AAT proposed in [19] allows each device to
transmit with a dynamic transmission probability (determined
by the estimated number of active devices) for maximizing the
instantaneous network throughput only if its corresponding age
gain reaches a threshold, which could be computed adaptively
using the estimated distribution of age gains. In the form of
frame slotted ALOHA, the T-DFSA proposed in [20] allows
the frame length and age-gain threshold for each frame to
be adjusted by the estimated distribution of age gains, so
that the estimated expected number of active devices can
be the smallest number not smaller than a certain number
(searched by simulations). Different from [19], [20], under
the GAW arrival, [17] estimated the network AoI rather
than the individual age gains for heuristically adjusting the
transmission probability, which would obviously lead to the
AoI degradation.

However, these previous studies on AGDRA [10]–[21] have
not considered the event-driven periodic arrival of updates,

which usually appears in many monitoring services [26]–[28].
For example, in closed-loop process control, multiple sensors
are employed to measure the plant outputs and validate the
event conditions periodically, and then each sensor sends a
fresh status update to a machine controller as needed. Note
that such an arrival process can include GAW, Bernoulli, and
periodic arrival processes considered in [10]–[25] as particular
cases, and its primary technical difficulty is to deal with time-
varying statistical characteristics of stochastic arrivals. [10]–
[15], [18], [21] used steady-state analysis for either GAW or
Bernoulli arrival processes; thus their models cannot be ap-
plied to analyze the transient behavior within each period. [25]
used non-stationary analysis to study the transient behavior
under periodic arrival but assumed a delivery deadline without
setting an age gain threshold; thus lacked a characterization
of the mutual effect of different periods on the age gains.

C. Contributions
To fill the gap in this field, this paper attempts to design

a type of AGDRA in the form of slotted ALOHA with an
age gain threshold [10]–[16], [19], [20], called T-AGDSA,
under event-driven periodic updating. Compared to the ex-
isting work [11], [12], [19], [20], [25], this paper makes the
following key contributions.

(i) Basic T-AGDSA: For simple implementation, consider
fixed threshold and fixed transmission probability as in [10]–
[16]. We provide an analytical modeling approach to evaluate
the network AAoI under event-driven periodic updating, based
on which optimal fixed threshold and optimal fixed transmis-
sion probability can be obtained offline. Compared to [11],
[12], [25], the technical difficulty of our work is to consider the
mutual impact of event-driven periodic updating and the age-
gain-dependent behavior in modeling, which is overcome by a
multi-layer DTMC model. Here an external DTMC manages
the jumps between the beginnings of frames, while an internal
DTMC manages the evolution during an arbitrary frame. Note
that the modeling approaches in [12], [25] can be seen as
special cases here.

(ii) Enhanced T-AGDSA: To pursue lower network AAoI,
we propose an enhanced T-AGDSA scheme that allows each
device to adjust the threshold and the transmission probability
for maximizing the estimated network expected AoI reduction
(EAR) per slot, based on the knowledge of age gains of all
the devices. Our approach for acquiring such knowledge relies
on using Bayes’ rule to keep the a posteriori joint probability
distribution for the local age and age gain of an arbitrary device
given all of the globally available information. Compared
with the AAT [19] that maximizes the estimated instantaneous
network throughput under a reasonably controlled effective
sum arrival rate, our scheme can avoid low efficiency of the
throughput-EAR conversion. Compared with the T-DFSA [20]
that controls the estimated expected number of active devices
reasonably, our scheme can avoid the network EAR degrada-
tion when the probability distribution of the estimated number
is divergent. Through extensive numerical experiments, we
validate our theoretical analysis and demonstrate the advantage
of the proposed schemes over the schemes in [11], [19], [20],
[25] in a wide range of network configurations.



3

TABLE I
COMPARISON OF AGDRA SCHEMES.

Scheme Traffic
pattern

Access
parameters

Required
observations

Consider the dependence
between age gains and
local ages in modeling?

Rule of updating
the knowledge of

age gains
TA [11], ADRA [12] GAW Fixed N/A N/A N/A

Basic T-AGDSA
(Section III)

Event-driven
periodic Fixed N/A ✓ N/A

AAT [19] Bernoulli Adaptive Collision feedback × Bayesian rule

T-DFSA [20] Bernoulli Adaptive Number of suc., idle, and colli. slots
and the age gains of the successful devices × Maximum likelihood

estimation
Enhanced T-AGDSA

(Section IV)
Event-driven

periodic Adaptive Channel status (idle/suc./colli.) ✓ Bayesian rule

The remainder of this paper is organized as follows. The
system model, the considered two versions of T-AGDSA, and
a lower bound on the network AAoI are specified in Section II.
In Section III, we provide an analytical modeling approach
to evaluate basic T-AGDSA for determining optimal fixed
access parameters. In Section IV, we propose an enhanced T-
AGDSA scheme for maximizing the estimated network EAR
per slot. Section V provides numerical results to verify our
study. Section VI draws final conclusions.

II. SYSTEM MODEL AND PRELIMINARIES

A. Network Model

Consider a globally-synchronized uplink IoT system con-
sisting of a common access point (AP) and N devices, indexed
by N ≜ {1, 2, ..., N}. The global channel time is divided into
frames (indexed from frame 0), each of which consists of D
consecutive slots, where D ∈ Z+ denotes the minimum update
interval of each device. The slots in frame m ∈ N are indexed
from slot mD to (m+1)D−1. At the beginning of each frame,
each device independently generates a single-slot update with
probability λ ∈ (0, 1] and does not generate updates at other
time points.2 To maintain the information freshness, a newly
generated update at each device will replace the undelivered
older one if there is any.

By considering a reliable wireless channel under an ap-
propriate modulation and coding scheme, we assume that an
update is successfully transmitted if it is not involved in a
collision, and otherwise is unsuccessfully transmitted. After
a successful reception of an update of a device, the AP
immediately sends an acknowledgment (ACK) to notify the
device without errors or delays.3 Thus, at the end of each slot
t, each device is able to be aware of the channel status of slot
t, denoted by ct ∈ {0(idle), 1(success), ∗(collision)}.

B. Performance Metrics

At the beginning of slot t, we denote the local age, proposed
in [4], of device n by wn,t, which measures the number of slots
elapsed since the generation moment of its freshest update.
The local age of device n is reset to zero if the device generates

2This assumption holds when the devices with globally synchronized clocks
validate the event conditions synchronously and periodically (e.g. in a periodic
event-triggered control implementation for closed-loop process control [26]).
3This assumption holds when ACKs are well protected by error correction
codes and the ACK length is negligible compared with the update length [10].

an update at the beginning of slot t, otherwise, it increases by
one. Then, the evolution of wn,t with wn,0 = 0 is given by

wn,t+1 =


0, if device n generates an update

at the beginning of slot t+ 1,
wn,t + 1, otherwise.

(1)

Next, we denote the instantaneous AoI, proposed in [4], of
device n at the beginning of slot t by hn,t, which measures
the number of slots elapsed since the generation moment of its
most recently successfully transmitted update. If the freshest
update of device n is transmitted successfully at slot t, the
AoI of device n will be set to its local age (in the previous
slot) plus one, otherwise, the AoI will increase by one. Then,
the evolution of hn,t with hn,0 = 0 is given by

hn,t+1 =


wn,t + 1, if device n successfully

transmits in slot t,
hn,t + 1, otherwise.

(2)

Owing to the ACK mechanism and local information about
wn,t, each device n is able to be aware of the value of hn,t+1

at the beginning of slot t+ 1 for each t ≥ 0.
We define the AAoI of device n as:

∆n ≜ lim
T→∞

1

T

T−1∑
t=0

hn,t, (3)

where T is the time horizon length. We aim to design a random
access protocol that minimizes the network AAoI,

∆ ≜
1

N

N∑
n=1

∆n. (4)

C. Random Access Protocol

We define the age gain, proposed in [29], of device n at the
beginning of slot t as

gn,t ≜ hn,t − wn,t, (5)

which quantifies the reduction in instantaneous AoI upon a
successful transmission of device n. Based on the fact that
hn,t ≥ wn,t, it is clear that gn,t ≥ 0.

Following [19], we require each device n with a non-empty
buffer (i.e., gn,t ≥ 1) to send its update according to the
following T-AGDSA protocol, that is,

(i) transmits at the beginning of slot t with the probability
pt ∈ (0, 1] if gn,t ≥ Γt, where Γt ∈ Z+ denotes the age gain
threshold in slot t,
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(ii) otherwise keeps silent at slot t.
A device n is said to be active in slot t if gn,t ≥ Γt.
Then, we consider the following two versions of T-AGDSA

with different settings of Γt and pt.
(i) Basic T-AGDSA: for simple implementation [11], the

values of Γt and pt are fixed to Γsta and psta, respectively, for
all slots t.

(ii) Enhanced T-AGDSA: at the beginning of each slot
t, each device utilizes the globally available information,
including the network parameters N , λ, D, previous channel
status ct−1, and previous access parameters Γt−1, pt−1 to
update the joint probability distribution of local age and age
gain of an arbitrary device in a Bayesian manner, and uses this
distribution to obtain the knowledge of age gains. Note that,
similar to [19], since the devices only use globally available
information to compute Γt, pt individually, each device would
obtain the same knowledge of age gains and compute the same
values of Γt, pt, without the need of sharing.

It will be shown in Sections III–V that basic T-AGDSA
can be developed offline through theoretical modeling and is
simpler to implement online compared to enhanced T-AGDSA,
but cannot utilize the knowledge of age gains to improve the
AoI performance as done in enhanced T-AGDSA.

arrival success

Fig. 1. An example of hn,t, wn,t, gn,t and Γt evolving over time under
enhanced T-AGDSA when D = 4. The black solid arrowhead indicates
the arrival of an update, whereas the black hollow arrowhead indicates the
successful transmission of the most recently generated update of device n in
the corresponding slot.

An example of hn,t, wn,t, gn,t and Γt evolving over time
under enhanced T-AGDSA when D = 4 is shown in Fig. 1.

D. Lower bound

When D = 1, [19] derived a lower bound on the achievable
network AAoI by assuming that all updates can be delivered
instantaneously upon their arrival, without experiencing colli-
sions. We extend this bound to the case D ≥ 1. This bound
is tighter when Nλ/D is smaller, which will be verified in
Section V. The proof is given in the Appendix.

Proposition 1: For any transmission scheme under the
system model specified in Section II-A,

∆ ≥ D/λ+ (1−D)/2. (6)

III. MODELING AND DESIGN OF BASIC T-AGDSA
In this section, we provide an analytical modeling approach

to evaluate the network AAoI of basic T-AGDSA, and use this
modeling to obtain optimal values of fixed threshold Γsta and
fixed transmission probability psta.

The symmetric scenario described in Section II allows us to
analyze the AAoI of an arbitrarily tagged device to represent
the network AAoI. So, we omit the device index for analysis
simplicity. To reflect the impact of the frame length D better,
we identify a slot t by the tuple (m, ν), where m = ⌊t/D⌋
and ν = t−mD, for arbitrary t ≥ 0.

To deal with the mutual effect of different frames and the
transient behavior within each frame, which are over different
time scales, we decompose the system in two nested layers
(as shown in Fig. 2) using a multi-layer Markov model where
the external layer manages the jumps between consecutive
beginnings of frames, while the internal layer manages the
evolution during an arbitrary frame. In the rest of this section,
we explore how to establish these two layers.

A. External Layer

Let Wm and Hm denote the local age and instantaneous AoI
of the tagged device at the beginning of frame m, respectively.
By Eq. (1) and the traffic pattern described in Section II, the
evolution of Wm with W0 = 0 can be expressed as

Wm+1=


0, if an update arrives at the

beginning of frame m+ 1,
Wm +D, otherwise.

(7)

By Eq. (2), the evolution of Hm with H0 = 0 is

Hm+1=


Wm +D, if an update is successfully

transmitted during frame m,
Hm +D, otherwise.

(8)

Denote the age gain of the tagged device at the beginning of
frame m by Gm. By Eq. (5), we have

Gm = Hm −Wm. (9)

Consider a state process X ≜ {Xm,m ∈ N} where Xm ≜
(Wm, Gm). By Eqs. (7)–(9), we observe that the transition to
the next state in X depends only on the present state and not
on the previous states. Hence, X can be viewed as a DTMC
with the infinite state space X ≜ {(lD, kD)|l, k ∈ N}.

For an arbitrary frame m with Xm = (lD, kD), let
αl,k,ν and βl,k denote the probabilities that the tagged device
transmits its update successfully at slot (m, ν) and in frame
m, respectively. Obviously, βl,k =

∑D−1
ν=0 αl,k,ν . According to

the evolution of Wm and Gm given in Eqs. (7)–(9), the state
transition probabilities of X can be obtained as

PX
(lD,kD),(l′D,k′D)

≜ Pr
(
Xm+1 = (l′D, k′D) | Xm = (lD, kD)

)

=



λβl,k, if l′ = 0, k′ = l + 1,

λ(1− βl,k), if l′ = 0, k′ = l + k + 1,

(1− λ)βl,k, if l′ = l + 1, k′ = 0,

(1− λ)(1− βl,k), if l′ = l + 1, k′ = k,

0, otherwise.

(10)

Consider that under the traffic pattern described in Sec-
tion II, the age gain of the tagged device during frame m
remains unchanged if the tagged device fails to transmit its
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Internal Layer

External Layer

s*,

Derive the transition matrix  of .X
P X

Derive the steady-state

distribution of . X

Derive the transition matrix  of .s

s

Y
P Y

Derive  using Eq. (18).
s

*, , ,
 using Eqs. (19) - (21).Derive 
s

*, , *,
Derive  

using Eqs. (22),  (14).

and 

Derive the average AoI 

for device  using Eq. 17 .

n

n

Fig. 2. Flowchart illustrating the basic idea of analyzing basic T-AGDSA.

lD, kD

0, (l+k+1)D (l+1)D, kD

State 
m
X

1State 
m
X

1

X

(a) l ≥ 0, 0 ≤ k ≤ γ − 1.

lD, kD

0, (l+1)D 0, (l+k+1)D (l+1)D, 0(l+1)D, kD

State 
m
X

1State 
m
X

*,
(1 )

*,
(1 )(1 )

*,
(1 )

*,

(b) l ≥ 0, k ≥ γ.

Fig. 3. The external DTMC X .

update successfully in frame m; otherwise, the age gain will
reduce to zero and remain zero in the subsequent slots during
frame m after a successful transmission. Thus, the age gain of
the tagged device in each slot takes value from {0, D, 2D, . . .}.
This observation allows us to set γ ≜ ⌈Γsta/D⌉, and discuss
possible values of αl,k,ν and βl,k in Eq. (10) based on different
values of l, k, ν and γ.

Case 1: When l ≥ 0, 0 ≤ k ≤ γ − 1, we have Gm ≤
(γ − 1)D < Γsta. Consider that the tagged device keeps its
age gain unchanged during frame m if it does not make a
successful transmission during frame m. So, the tagged device
always keeps silent in frame m as its age gain is always smaller
than Γsta. Then we obtain

αl,k,ν = 0, (11)

βl,k =

D−1∑
ν=0

αl,k,ν = 0, (12)

if l ≥ 0, 0 ≤ k ≤ γ− 1, 0 ≤ ν ≤ D− 1. With Eqs. (10)–(12),
the state transitions for this case are illustrated in Fig. 3(a).

Case 2: When l ≥ 0, k ≥ γ, we have Gm ≥ γD ≥ Γsta, the
tagged device transmits its update with a fixed probability psta

at the beginning of slot (m, ν) when 0 ≤ ν ≤ D − 1 until a
successful transmission. Note that the tagged device behaves
the same during frame m regardless of the values of Wm, Gm
when Gm ≥ γD. So, we rewrite αl,k,ν and βl,k simply as

αl,k,ν = α∗,γ+,ν , (13)

βl,k =

D−1∑
ν=0

α∗,γ+,ν = β∗,γ+ , (14)

if l ≥ 0, k ≥ γ, 0 ≤ ν ≤ D − 1. Both α∗,γ+,ν and β∗,γ+

are independent of values of l and k. With Eqs. (10), (13),
and (14), the state transitions for this case is illustrated in
Fig. 3(b).

Note that the state (0, 0) in X is an ephemeral state only
occurring when m = 0 (i.e., t = 0), while the remaining states
are all in the same recurrent class and occur when m ≥ 1 (i.e.,
t ≥ D). As m increases, X will get absorbed in the recurrent
class and stay there forever. Denote by π ≜ (πlD,kD)l,k∈N the
steady-state distribution of X . Each element πlD,kD denotes
the steady-state probability of X staying at state (lD, kD).
We assume that π0,0 = 0.

Then, for different states in X , we consider the following
two cases for evaluating the AAoI of the tagged device during
an arbitrary frame m with Xm = (lD, kD).

Case 1: The tagged device transmits its update successfully
at slot (m, ν) given Xm = (lD, kD). Let ∆l,k,ν denote the
AAoI of the tagged device during frame m when this event
occurs. We have

∆l,k,ν =
1

D

( ν∑
ν′=0

(
(l + k)D + ν′

)
+

D−1∑
ν′=ν+1

(lD + ν′)
)

= lD + k(ν + 1) +
D − 1

2
. (15)

Case 2: The tagged device fails to transmit its update
successfully during frame m given Xm = (lD, kD). Let
∆l,k,∗ denote the AAoI of the tagged device during frame
m when this event occurs. We have

∆l,k,∗ =

∑D−1
ν=0

(
(l + k)D + ν

)
D

= (l + k)D +
D − 1

2
.

(16)

Based on the DTMC X and Eqs. (15), (16), the AAoI of
an arbitrary device n can be derived as

∆n =

∞∑
l=0

∞∑
k=0

πlD,kD
(D−1∑
ν=0

αl,k,ν∆l,k,ν+(1− βl,k)∆l,k,∗
)

=

∞∑
l=0

∞∑
k=γ

πlD,kD
(D−1∑
ν=0

α∗,γ+,ν∆l,k,ν+(1−β∗,γ+)∆l,k,∗
)

+

∞∑
l=0

γ−1∑
k=0

πlD,kD∆l,k,∗. (17)

In the following, we will derive α∗,γ+,ν , which is necessary
to compute ∆n based on Eqs. (15)–(17).



6

B. Internal Layer to Evaluate α∗,γ+,ν

Note that whether the tagged device can transmit its update
successfully depends on the behaviors of all active devices
during frame m. Let a random variable Sm denote the number
of active devices not including the tagged device at the
beginning of an arbitrary frame m, and let χs denote the
probability mass function of Sm = s. Following [12], we
make a simplifying decoupling assumption that the states of
all the devices are independent of each other. Then, based on
the binomial distribution, for each 0 ≤ s ≤ N − 1, we have

χs =

(
N − 1

s

)( ∞∑
l=0

∞∑
k=γ

πlD,kD

)s( ∞∑
l=0

γ−1∑
k=0

πlD,kD

)N−1−s
.

(18)

Consider an arbitrary frame m with Gm ≥ γD and Sm = s.
Define Ys ≜ {Ys,ν , ν = 0, 1, . . . , D} as an absorbing DTMC
with the finite state space Ys ≜ {0, 1, . . . , s, suc}, as shown
in Fig. 4. The states Ys,ν = y with 0 ≤ ν ≤ D, 0 ≤ y ≤ s
are transient states indicating that, during frame m, the tagged
device has not transmitted successfully before the beginning of
slot (m, ν) while other y devices have transmitted successfully
before the beginning of slot (m, ν). The state Ys,ν = suc is
an absorbing state indicating that, during frame m, the tagged
device has transmitted successfully before the beginning of
slot (m, ν). For convenience, the slot index (m,D) is used to
denote the slot index (m+1, 0) here. As shown in Fig. 4, the
state transition probabilities of Ys can be obtained as

PYs

y,y′ ≜ Pr
(
Ys,ν+1 = y′ | Ys,ν = y

)
=

1−(s−y+1)psta(1−psta)s−y,

if 0 ≤ y ≤ s, y′ = y,

(s− y)psta(1− psta)s−y,

if 0 ≤ y ≤ s− 1, y′ = y + 1,

psta(1− psta)s−y, if 0 ≤ y ≤ s, y′=suc,

1, if y = y′ = suc,

0, otherwise.

(19)

The first case in Eq. (19) corresponds to that no device
transmits successfully in slot (m, ν) when 0 ≤ y ≤ s. The
second case corresponds to that one of the other (s−y) devices
transmits successfully in slot (m, ν) when 0 ≤ y ≤ s − 1.
The third case corresponds to that the tagged device transmits
successfully in slot (m, ν) when 0 ≤ y ≤ s. The fourth case
corresponds to that the tagged device has made a successful
transmission before the beginning of slot (m, ν).

suc

s

0,
s

suc
P
Y

1,
s

suc
P
Y

,
s

s suc
P
Y

0,0
sP
Y

1,1
sP
Y

,
s

s s
P
Y

0,1
sP
Y

1,2
sP
Y

1,
s

s s
P
Y

Fig. 4. The internal absorbing DTMC Y .

Let φs,ν denote the state vector of Ys,ν , where the i-th
element corresponds to the state i − 1 for 1 ≤ i ≤ s + 1
and the last element corresponds to the state suc. Then, given

the priori state vector φs,0 ≜ [1, 0, 0, . . . , 0] and the transition
matrix P Ys based on Eq. (19), by applying a simple power
method, for each 0 ≤ ν ≤ D and 0 ≤ s ≤ N − 1, we have

φs,ν = φs,0(P
Ys)

ν
. (20)

Let α∗,γ+,ν,s denote the probability that the tagged device
transmits successfully in slot (m, ν) of an arbitrary frame m
with Gm ≥ γD, Sm = s. Then, we have

α∗,γ+,ν,s = φs,ν+1(s+ 2)−φs,ν(s+ 2), (21)

for each 0 ≤ ν ≤ D − 1 and 0 ≤ s ≤ N − 1. By Eqs. (18)
and (21), for each 0 ≤ ν ≤ D − 1, we have

α∗,γ+,ν =

N−1∑
s=0

χsα∗,γ+,ν,s. (22)

C. Evaluation of ∆n

Now we are ready to use the following three steps to
compute ∆n by connecting the external and internal layers
proposed in previous subsections.

Step 1: Based on the transition probabilities in Eq. (10), the
steady-state distribution π can be obtained by solving a set of
linear equations

πPX = π, (23)

and the normalizing condition
∞∑
l=0

∞∑
k=0

πlD,kD = 1. (24)

Since β∗,γ+ is involved as the only unknown parameter in
the transition matrix PX , each πlD,kD can be expressed as
a function of β∗,γ+ using a mathematical induction method
based on Eqs. (10), (23), (24). Meanwhile, α∗,γ+,ν in Eq. (14)
can be expressed as a function of πlD,kD, l, k ∈ N based on
Eqs. (18)–(22). Hence, we can obtain the value of β∗,γ+ by
solving Eq. (14) using numerical methods.

Step 2: With the value of β∗,γ+ , we can obtain the values
of πlD,kD, l, k ∈ N since each πlD,kD can be expressed as a
function of β∗,γ+ , and then obtain the values of α∗,γ+,ν , 0 ≤
ν ≤ D − 1 by Eqs. (18)–(22).

Step 3: With the values of πlD,kD, l, k ∈ N, α∗,γ+,ν , 0 ≤
ν ≤ D−1 and β∗,γ+ , we can obtain the AAoI for an arbitrary
device n by Eq. (17).
Remark 1: When Γsta = λ = 1, we note that we can drop
the subscripts l, k of βl,k and have π0,kD = β(1− β)k−1 for
k ≥ 1 since βl,k is independent of l and k. So, our modeling
approach is reduced to that in [25].
Remark 2: When D = λ = 1 (i.e., the GAW traffic), we have
Wm = 0, Hm = Gm for each m ∈ N, and

β∗,γ = β∗,γ+ = α∗,γ,0 = α∗,γ+,0 =

N−1∑
s=0

χsp
sta(1− psta)s

= psta(1− psta
∞∑
k=γ

π0,k)
N−1. (25)

So, our modeling approach is reduced to that in [12].
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Remark 3: When D = λ = 1, [11] presented a precise steady-
state analysis without assuming that the states of all the devices
are independent of each other. A key idea therein is to utilize
an inherent feature for D = λ = 1, that is, different inactive
devices have different age gains. However, it is inapplicable
for D > 1 or λ < 1 because there may exist multiple inactive
devices with the same age gain.

D. Seeking Optimal Γsta and psta

To seek optimal values of Γsta and psta, we can view ∆n

given in Eq. (17) as a function of both Γsta and psta, denoted
by ∆n(Γ

sta, psta). However, it is difficult to obtain the gradient
of ∆n(Γ

sta, psta) due to the lack of an explicit expression. So,
gradient-free search methods need to be applied. Since the
age gain of each device is always an integral multiple of D
as described in Section III-A, we can consider only Γsta =
kD, k = 1, 2, . . . to reduce the search space.

E. Impacts of Network Parameters

By Eqs. (14), (18)–(22), we know both α∗,γ+,ν , β∗,γ+ de-
crease with N since the value range of s grows with N , which
leads to an increment of the term

∑D−1
ν=0 α∗,γ+,ν∆l,k,ν +(1−

β∗,γ+)∆l,k,∗ in Eq. (17). In addition, as β∗,γ+ decreases, the
steady-state probabilities πlD,kD become larger for large k,
which also leads to an increment of Eq. (17). These impacts
are verified by Fig. 6, which shows that the network AAoI
always increases with N .

By Eq. (10) and Fig. 3, we observe that (π0,kD)k∈N
increases with λ, which leads to a reduction of Eq. (17).
Obviously, the age gains of all the devices tend to change
to larger values more frequently as λ increases. By this ob-
servation and Eqs. (14), (18)–(22), we know that both α∗,γ+,ν

and β∗,γ+ decrease with λ, which leads to an increment of
Eq. (17). By Eqs. (10), (14), (18)–(22), we further know this
increment would become larger as N increases, λ increase
or D decreases. These impacts are verified by Fig. 6, which
shows that the network AAoI decreases with λ, and the
decreasing trend becomes gentler as N increases, λ increases
or D decreases.

By Eqs. (15), (16), we know that the terms ∆l,k,ν and ∆l,k,∗
in Eq. (17) both increase linearly with D. By Eqs. (14), (18)–
(22), we know that β∗,γ+ increases with D, leading to a
decrement of the term (1 − β∗,γ+) in Eq. (17). Further, by
Eq. (10) and Fig. (3), we know that πlD,kD would become
larger for small k as β∗,γ+ increases, which also leads to
a decrement of Eq. (17). By Eqs. (10), (14), (18)–(22), we
further know these two decrements would become larger as
N increases, λ increases or D decreases. These impacts
are verified by Fig. 6, which shows that the network AAoI
increases with D, and the increasing trend gradually becomes
gentle as N increases, λ increases or D decreases.

F. Complexity analysis

Following [19], [20], we set a large integer U to truncate
the maximum values of local ages and age gains for practical
implementation. The basic T-AGDSA has an online compu-
tational complexity O(1), but has an offline computational

complexity (Cnumer+O(U
2

D2+N
2D+U2

D ))E2search where Cnumer
denotes the complexity of the used numerical method for
solving the single-variable function of β∗,γ+ , O(U

2

D2 +N2D)

is the complexity of computing Eqs. (18)–(22), O(U
2

D ) is
the complexity of computing Eq. (17), and E2search denotes
the number of the evaluations for seeking optimal Γsta, psta

under the used two-dimensional gradient-free search method.
For example, the derivative-free nonmonotone line search
method yields Cnumer ≤ O((U

2

D2 + N2D) | log σ|σ2 ) [30] and
the directional direct-search method yields E2search ≤ O( U

Dϵ2 )
[31], where σ, ϵ both denote the solution accuracy.

IV. DESIGN OF ENHANCED T-AGDSA

In this section, we propose an enhanced T-AGDSA scheme
that allows each device to adjust the threshold Γt and the
transmission probability pt for maximizing the estimated net-
work EAR per slot, based on the knowledge of age gains of
all the devices. After introducing the basic idea of our design,
we will present a comprehensive explanation of the three key
steps as shown in Fig. 5.

A. Basic Idea

Define the AoI reduction of device n in slot t as

rn,t ≜ hn,t − hn,t+1. (26)

We can use Eqs. (2), (5) and (26) to compute rn,t as follows.

rn,t=


(wn,t+gn,t)−(wn,t+1)

= gn,t − 1, if device n successfully
transmits in slot t,

hn,t−(hn,t+1)=−1, otherwise.
(27)

Let θn,t denote the success probability when device n trans-
mits in slot t. From Eq. (27), we can obtain the EAR of device
n in slot t as

Rn,t ≜ E(rn,t) =
(
(gn,t − 1)ptθn,t − (1− ptθn,t)

)
Ign,t≥Γt

+ (−1)I0≤gn,t<Γt

=
(
gn,tptθn,t − 1

)
Ign,t≥Γt

− I0≤gn,t<Γt

= −1 + gn,tptθn,tIgn,t≥Γt
,

= −1 + gn,tpt(1− pt)
un,tIgn,t≥Γt

, (28)

where E(·) denotes the expectation operator, Iψ is the indicator
function which equals 1 if the event ψ is true and 0 otherwise,
and un,t ≜

∑N
n′=1,n′ ̸=n Ign′,t≥Γt denotes the number of active

devices not including device n in slot t. Then, the network
EAR in slot t can be obtained as

Rt ≜

∑N
n=1Rn,t
N

. (29)

This section will investigate how each device uses globally
available information to choose Γt and pt for maximizing Rt.
Note that, although it may be possible to achieve better results
by using information local to the devices, or using a strategy
to maximize the long-run network EAR that is not “one-step
look-ahead”, we do not pursue these possibilities here.
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From Eqs. (28)–(29), we see that the values of the age gains
gn,t, n ∈ N is essential for maximizing Rt. However, in
practice, it is impossible for each device to obtain precise
values of the age gains of other devices. So, to obtain a
knowledge of age gains, we require each device to keep the
a posteriori joint probability distribution of local age and age
gain of an arbitrarily tagged device at the beginning of slot
t, given all of the globally available information. We denote
this distribution by (f̂t,w,g)w,g∈N, where f̂t,w,g ≜ Pr

(
wn,t =

w, gn,t = g
)
, w, g ∈ N. Based on (f̂t,w,g)w,g∈N, a brief

introduction of the three key steps of the proposed enhanced
T-AGDSA as shown in Fig. 5 is given below:

Step 1: At the beginning of slot t, each device uses
(f̂t,w,g)w,g∈N to obtain an estimate of network EAR, denoted
by R̂t, and then chooses Γt and pt that maximize R̂t.

Step 2: At the end of slot t, each device uses the observed
channel status Γt, pt, ct to update (f̂t,w,g)w,g∈N in a Bayesian
manner. We denote the resulting distribution in this step by
(f̂t+,w,g)w,g∈N, where t+ represents the end of slot t.

Step 3: At the beginning of slot t+1, if t = mD− 1,m ∈
Z+, each device obtains (f̂t+1,w,g)w,g∈N using (f̂t+,w,g)w,g∈N
and the update generation probability λ, otherwise, each device
obtains (f̂t+1,w,g)w,g∈N = (f̂t+,w,g)w,g∈N.

Note that these steps are also related to how to update
(f̂t,w,g)w,g∈N. Obviously, as only globally available informa-
tion is used in these steps, each device would obtain the same
(f̂t,w,g)w,g∈N, and thus obtain the same knowledge of age
gains without the need of sharing.

Remark 4: In AAT [19], Γt is chosen so that the effective sum
arrival rate approaches 1/e as close as possible and pt is then
chosen for maximizing the instantaneous network throughput.
However, such a setting may yield unsatisfactory network
EAR, since it allows the devices with low age gains to compete
for the transmission opportunity as soon as the effective sum
arrival rate does not exceed 1/e. In other words, in a slot,
higher network throughput cannot be certainly converted to
larger network EAR.

Remark 5: In T-DFSA [20], the maximum value of the thresh-
olds that make the estimated expected number of active devices
not smaller than a certain number (searched by simulations)
is chosen. However, such a setting may yield unsatisfactory
network EAR, since its design objective may be far from
maximizing the network EAR, especially when the probability
distribution of the estimated number is divergent.

Remark 6: Both AAT [19] and T-DFSA [20] ideally assume
that the age gain and local age of a device are independent
of each other, thus only consider the distribution of age
gain. However, there is a strong dependence between them
as described in Eq. (5). This is indeed why we consider
(f̂t,w,g)w,g∈N.

Remark 7: The AAT [19] utilizes only the collision feedback
to update its estimate, while our enhanced T-AGDSA scheme
utilizes the ternary feedback (idle, success, collision). Never-
theless, our scheme requires no additional overhead owing to
the ACK mechanism.

B. Choosing Γt and pt based on (f̂t,w,g)w,g∈N

In the following, we present how to estimate the network
EAR in slot t based on (f̂t,w,g)w,g∈N by assuming that the
states of all the devices are independent of each other.

Let ût denote the estimated number of active devices not
including an arbitrary device in slot t, and let ξt,u denote the
probability mass function of ût = u. Based on the binomial
distribution, we have

ξt,u =

(
N − 1

u

)
ρut (1− ρt)

N−1−u, (30)

for each 0 ≤ u ≤ N − 1, where

ρt =

∞∑
w=0

∞∑
g=Γt

f̂t,w,g, (31)

denotes the probability of an arbitrary device being active in
slot t.

From Eq. (30), we obtain the estimated success probability
of an arbitrary transmission in slot t as follows.

θ̂t =

N−1∑
u=0

ξt,u(1− pt)
u. (32)

From Eqs. (27) and (32), we can obtain the following estimate
of network EAR in slot t.

R̂t =

∞∑
w=0

∞∑
g=0

f̂t,w,g
(
− 1 + gptθ̂tIg≥Γt

)
= −1 +

( ∞∑
w=0

∞∑
g=Γt

f̂t,w,gg
)
ptθ̂t (33)

We can view R̂t as a function of Γt and pt, denoted
by R̂t(Γt, pt). We see from Eq. (33) that, for each given
Γt ≥ 1, the maximization of R̂t(Γt, pt) is equivalent to the
maximization of ptθ̂t. So, we can obtain the value pot that
maximizes ptθ̂t by differentiating and root finding since ptθ̂t
is a polynomial of pt. However, in practice, such computation
would probably be excessive. Following [32], [33], we can
approximate pot as follows.

p̂ot = min{ 1

Nρt
, 1}. (34)

C. Computing (f̂t+,w,g)w,g∈N Using Channel Observations

Let wn,t+ and gn,t+ denote the local age and age gain of an
arbitrary device n at the end of slot t, respectively. Given all
globally available information at the end of slot t, each device
is able to compute f̂t+,w′,g′ using Bayes’ rule as follows.

f̂t+,w′,g′

≜ Pr
(
wn,t+ = w′, gn,t+ = g′|Γt, pt, ct = c, (f̂t,w,g)w,g∈N

)
=

1

ρ

∑
w,g∈N

f̂t,w,gPr
(
wn,t+ = w′, gn,t+ = g′, ct = c|Γt,

pt, wn,t = w, gn,t = g
)
, (35)
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Fig. 5. Flowchart of the enhanced T-AGDSA illustrating the three main steps in Algorithm 1.

for each t, w′, g′ ∈ N, where

ρ =
∑

w′′,g′′∈N

∑
w,g∈N

f̂t,w,gPr
(
wn,t+ = w′′, gn,t+ = g′′,

ct = c|Γt, pt, wn,t = w, gn,t = g
)
, (36)

Pr
(
wn,t+ = w′, gn,t+ = g′, ct = c|Γt, pt, wn,t = w, gn,t = g

)

=



(1− pt)
∑N−1
u=0 ξt,u(1− pt)

u,

if g ≥ Γt, c = 0, w′ = w + 1, g′ = g,∑N−1
u=0 ξt,u(1− pt)

u,

if 0 ≤ g < Γt, c = 0, w′=w + 1, g′=g,

(1− pt)
∑N−1
u=1 ξt,uupt(1− pt)

u−1,

if g ≥ Γt, c = 1, w′ = w + 1, g′ = g,∑N−1
u=1 ξt,uupt(1− pt)

u−1,

if 0 ≤ g < Γt, c = 1, w′=w + 1, g′=g,

pt
∑N−1
u=0 ξt,u(1− pt)

u,

if g ≥ Γt, c = 1, w′ = w + 1, g′ = 0,∑N−1
u=1 ξt,u

∑u+1
u′=2

(
u+1
u′

)
pu

′

t (1− pt)
u+1−u′

,

if g ≥ Γt, c = ∗, w′ = w + 1, g′ = g,∑N−1
u=2 ξt,u

∑u
u′=2

(
u
u′

)
pu

′

t (1− pt)
u−u′

,

if 0 ≤ g < Γt, c = ∗, w′=w + 1, g′=g,

0, otherwise.

(37)

In Eq. (37), the first and second cases correspond to that
no devices transmit, the third and fourth cases correspond to
that one of the other N − 1 devices transmits successfully,
the fifth case corresponds to that the tagged device transmits
successfully when it is active in slot t, the sixth and seventh
cases correspond to that a collision occurs.

D. Computing (f̂t+1,w,g)w,g∈N Using the Update Generation
Probability

It remains to obtain (f̂t+1,w,g)w,g∈N at the beginning of
slot t+ 1 based on (f̂t+,w,g)w,g∈N and the update generation
probability λ. Initially, for each n ∈ N , each device knows
hn,0 = wn,0 = gn,0 = 0, which implies

f̂0,w,g =

{
1, if w = g = 0,

0, otherwise.
(38)

Considering that each device independently generates an up-
date with probability λ at the beginning of each frame m (i.e.,

t = mD,m ∈ Z+) and does not generate updates at other time
points, we have

f̂t+1,w′,g′ ≜ Pr
(
wn,t+1 = w′, gn,t+1 = g′|λ, (f̂t+,w,g)w,g∈N

)
=

∑
w,g∈N

f̂t+,w,gPr
(
wn,t+1 = w′, gn,t+1 = g′|λ,

wn,t+ = w, gn,t+ = g
)
, (39)

for each t, w′, g′ ∈ N, where

Pr
(
wn,t+1 = w′, gn,t+1 = g′|λ,wn,t+ = w, gn,t+ = g

)
=

λ, if t=mD−1,m∈Z+, w′=0, g′=w+g,

1− λ, if t=mD−1,m∈Z+, w′=w, g′=g,

1, if t ̸=mD−1,m∈Z+, w′=w, g′=g,

0, otherwise.

(40)

The enhanced T-AGDSA is summarized in Algorithm 1,
which, as shown in Fig. 5, can be implemented in a decentral-
ized manner as in [19], [20], since each device only uses its
previous action Γt−1, pt−1, and previous globally available
feedback ct−1 for determining Γt, pt individually at slot t,
without requiring coordination with each other.

E. Impacts of Network Parameters

Obviously, the network parameters have a significant impact
on the accuracy of Eq. (33), and thus have a significant
impact on the network AAoI improvement through maximiz-
ing Eq. (33). A key assumption in deriving Eq. (33) is that
the states of all the devices are independent of each other,
which would become more reasonable for larger N , smaller
λ or larger D. Further, according to Eqs. (39)–(40), as λ is
closer to 0 or 1, the estimate of f̂t,w,g would become more
accurate due to the reduced uncertainty, thus leading to higher
accuracy of Eq. (33). As D increases, there would be more
successful transmissions during a frame, and thus more devices
would enjoy the zero age gain at more time slots. By this
fact and Eqs. (35)–(37), the accuracy of the estimate of age
gains increases as D increases, thus increasing the accuracy
of Eq. (33). On the other hand, as D increases, each device
has a lower frequency of using the packet generation event
to reduce its local age to zero, which is also reflected in
Eqs. (35)–(37). So, the accuracy of the estimate of local ages
would decrease as D increases, especially when λ is large, thus
decreasing the accuracy of Eq. (33). Obviously, the accuracy of
the independence assumption is more sensitive than that of the
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estimate of f̂t,w,g for impacting the accuracy of Eq. (33). So,
in general, Eq. (33) has higher accuracy for larger N , smaller
λ or larger D, leading to more proper Γt, pt for improving
the network AAoI.

Algorithm 1 The proposed enhanced T-AGDSA.
1: Set t = 0.
2: for each n ∈ N do
3: // Implemented at the beginning of slot t.
4: if t = 0 then
5: Device n uses Eq. (38) to obtain f̂0,w,g .
6: else
7: if t = mD,m ∈ Z+ then
8: Device n uses Eq. (39) to obtain (f̂t,w,g)w,g∈N.
9: else

10: Device n obtains
(f̂t,w,g)w,g∈N = (f̂(t−1)+,w,g)w,g∈N.

11: end if
12: end if
13: Based on Eq. (34), device n chooses Γt and pt that

maximize Eq. (33).
14: if gn,t ≥ Γt then
15: In slot t, device n transmits with probability pt,
16: else
17: In slot t, device n keeps silent.
18: end if
19: // Implemented at the end of slot t.
20: Device n obtains the channel status ct.
21: Device n uses Eq. (35) to obtain (f̂t+,w,g)w,g∈N.
22: end for
23: t = t+ 1, return to step 2.

F. Complexity Analysis

The enhanced T-AGDSA has no need for offline computa-
tion but has an online computational complexity O(U

2

D2 ) +
O(N2)E1search in each slot t because the maximum num-
ber of non-zero elements of either of (f̂t,w,g)w,g∈N and
(f̂t+,w,g)w,g∈N is U2

D2 , each of which has at most two nonzero-
probability transitions in either of Eqs. (37) and (40). Here
E1search denotes the number of the evaluations of Eq. (33)
for searching Γ̂ot and E1search ≤ O(UD ). Since the function
R̂t(Γt, p̂ot ) is unimodal in our implementation, we can use the
bisection search method to obtain E1search ≤ O(log2

U
D ).

One can see Section III-F for comparing both the offline and
online complexity of the basic and the enhanced T-AGDSA.

Remark 8: It is difficult to use the current framework
to provide analytical tractability of the enhanced-TAGDSA,
where the curse of dimensionality of the underlying belief
(f̂t,w,g)w,g∈N is one of the major causes. This is a common
weakness in adaptive-threshold schemes [19], [20], which thus
restricted their computation to beliefs that are actually reached
as done in our work. One possible solution is to apply the
belief compression and clustering technique in the context of
partially observable Markov decision processes [34].

V. NUMERICAL RESULTS

This section consists of three subsections. The first subsec-
tion validates the analytical modeling of the proposed basic
T-AGDSA and examines its advantage over the following
schemes with fixed access parameters.

(i) Optimal slotted ALOHA [22], [23], [25]: under the age
gain threshold Γt = 1, each device uses an optimal fixed pt.
Note that [25] only considered λ = 1 and [22], [23] only
considered D = 1, so we will obtain the network AAoI for
other cases via simulations.

(ii) Threshold-ALOHA for D = 1 [11]: each device uses
an optimal fixed Γt and an optimal fixed pt when λ = D = 1,
and uses an suboptimal fixed Γt and an suboptimal fixed pt
when λ < 1, D = 1.

The second subsection examines the advantage of the pro-
posed enhanced T-AGDSA over the following schemes with
adaptive access parameters.

(i) Ideal scheduling [19]: the AP always selects one of the
devices with the highest age gains to transmit. It provides a
lower bound on the network AAoI.

(ii) Ideal adaptive slotted ALOHA [25]: each device uses
pt = 1/nt and Γt = 1, where nt represents the number of
active devices in slot t.

(iii) AAT [19] for D = 1: see Section I-B for details.
(iv) T-DFSA [20] for D = 1: see Section I-B for details.
The third subsection compares the basic T-AGDSA and en-

hanced T-AGDSA. The scenarios considered in the simulations
are in accordance with the descriptions in Section II. We shall
vary the network configuration over a wide range to validate
our theoretical study. Each simulation result is obtained from
10 independent simulation runs with 107 slots in each run.

A. Basic T-AGDSA

Fig. 6 shows the network AAoI of the basic T-AGDSA as a
function of the update generation probability λ for different N
and D. Note that the threshold-ALOHA [11] is inapplicable
when D > 1. The curves indicate that our analytical modeling
is accurate in all the cases.

1) Impact of the network parameters: We observe that the
network AAoI of all the schemes first decreases with λ and
then remains almost the same. This is because larger λ is
helpful to reduce the AAoI due to the delivery of fresher
updates, but this effect would become weaker due to severer
contention when λ is larger. We observe that the network
AAoI of all the schemes increases with N . This is because the
contention among devices is severer with large N . We observe
that the network AAoI of optimal slotted ALOHA [25] first
keeps almost the same as D increases when D is small and
then increases with D when D becomes larger, while the AAoI
of basic T-AGDSA always increases with D. This is because
introducing the fixed threshold Γsta prioritizes those devices
with large age gains to transmit with less collisions, which
mitigates the severe contention caused by small D.

2) Performance comparison: For the case D = 1, we
observe from Fig. 6(a) that the proposed basic T-AGDSA
enjoys up to 47.21% improvement over the optimal slotted
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Fig. 6. The network AAoI of the proposed basic T-AGDSA versus λ for different N and D.
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Fig. 7. The network AAoI of the proposed enhanced T-AGDSA versus λ for different N when D = 1.

ALOHA [22], [23], [25], which verifies the benefit of intro-
ducing the fixed threshold Γsta. We also observe the basic T-
AGDSA enjoys up to 10.24% improvement over the threshold-
ALOHA [11] in large-scale networks with sporadic individual
traffic (i.e., when N is large and λ is small), but performs
almost the same in other cases. This is because the age gain
threshold is more helpful in reducing the AAoI compared with
the AoI threshold used in the threshold-ALOHA [11] and this
advantage is notable when N is large and λ is small. This
advantage is enlarged when λ is small because the threshold-
ALOHA [11] used the assumption of λ = 1 to obtain the
transmission policy when λ < 1.

For the case D > 1, we observe from Fig. 6(b)–(d) that,
compared with optimal slotted ALOHA [25], the basic T-
AGDSA enjoys up to 44.31% improvement when D = 10,
up to 41.52% improvement when D = 20, and up to 35.70%
improvement when D = 50. These results indicate that
introducing Γsta is effective in improving the AAoI for a wide
range of configurations. In conjunction with Fig. 6(a), we
further observe that, in general, the advantage of the basic
T-AGDSA diminishes when λ decreases, N decreases, or D
increases. This is because the effect of introducing Γsta to
mitigate the contention becomes weaker in these cases.

B. Enhanced T-AGDSA

Figs. 7–8 show the network AAoI of the enhanced T-
AGDSA as a function of λ for different N and D. Note that
AAT [19] and T-DFSA [20] are both inapplicable when D > 1.

1) Impact of the network parameters: We observe that the
network AAoI of the ideal adaptive slotted ALOHA [25] first

decreases with λ and then remains almost the same, while the
other schemes always decrease with λ due to the effect of
introducing the adaptive age gain threshold. We also observe
that the network AAoI of all the schemes increases with N ,
which indicates again that large N would lead to severer
contention. We further observe that the network AAoI of the
ideal adaptive slotted ALOHA [25] first keeps almost the same
as D increases when D is small and then increases with D
when D becomes larger, while the AAoI of the enhanced
T-AGDSA and ideal scheduling schemes always increases
with D. This verifies the benefit of introducing the adaptive
threshold to prioritize the devices with large gains.

2) Performance comparison: For the case D = 1, we
observe from Fig. 7 that the enhanced T-AGDSA enjoys
up to 81.06% improvement over the ideal adaptive slotted
ALOHA [25]. This verifies the benefit of introducing the
adaptive threshold Γt, even if the latter utilizes the ideal
knowledge of nt. We also observe from Fig. 7 that the
enhanced T-AGDSA enjoys up to 52.21% improvement over
the AAT [19], and enjoys up to 53.07% improvement over the
T-DFSA [20]. This is owing to our more reasonable Γt, which
is computed by not only a more accurate estimation of the age
gains (see Remark 6) but also a more reasonable optimization
goal (see Remarks 4 and 5). We further observe that all the
schemes in Fig. 7 enjoy almost the same AAoI (close to
1/λ) when Nλ is small, which confirms the lower bound
1/λ proposed in [19]. This is because the inter-arrival time
becomes a dominant factor in determining the AAoI when the
network traffic is quite low. On the other hand, when Nλ is not
small, we note that the enhanced T-AGDSA performs closer
to the ideal scheduling [19] as λ increases, which implies that
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Fig. 8. The network AAoI of the proposed enhanced T-AGDSA versus λ for different N when D > 1.

our adaptive threshold can be chosen to limit the contention
to fewer devices with higher age gains due to a more accurate
estimation of age gains.

For the case D > 1, we observe from Fig. 8 that, compared
with the ideal adaptive slotted ALOHA [25], the enhanced T-
AGDSA enjoys up to 53.61% improvement when D = 10, up
to 48.85% improvement when D = 20, and up to 41.79%
improvement when D = 50. These results indicate that
introducing the adaptive Γt is effective in improving the
AAoI for a wide range of configurations. In conjunction with
Fig. 7, we also observe that, in general, such improvement
diminishes when λ decreases, N decreases, or D increases.
This is because the effect of introducing the adaptive Γt to
mitigate the contention becomes weaker in these cases. We
further observe that all the schemes enjoy almost the same
AAoI (close to D/λ) when Nλ/D is small, which confirms
our proposed lower bound D/λ + (1 − D)/2. We also note
that the AAoI of the enhanced T-AGDSA always decreases
with λ when D = 1, but first decreases with λ and then keeps
almost the same when D > 1. This is because there would
be more devices with large age gains as D increases, which
leads to severer contentions that weaken the advantage of more
accurate estimation of age gains under larger λ.

C. Basic T-AGDSA V.S. Enhanced T-AGDSA

We observe from Figs. 7–8 that, compared with the pro-
posed basic T-AGDSA, the proposed enhanced T-AGDSA
enjoys 7.81%− 64.98% improvement when D = 1, 8.19%−
21.36% improvement when D = 10, 3.08% − 20.17% im-
provement when D = 20, and 0.04%− 18.32% improvement
when D = 50. As expected, we note that such improvement is
close to zero when Nλ/D is quite low. We also observe that
such improvement always increases with λ when D = 1, but
first increases with λ and then decreases with λ when D > 1.
This indicates again that increased D diminishes the advantage
of the enhanced T-AGDSA. Such improvement comes from
more reasonable setting of the age gain threshold, but at a
cost of higher online computation burden on each device.

VI. CONCLUSION

In this paper, we have investigated how to design decen-
tralized schemes for reducing the network AAoI in an uplink
IoT system with event-driven periodic updating, so that the
unavoided contention can be limited to devices with age gains
as high as possible. We proposed a basic T-AGDSA scheme,
where the access parameters are fixed and can be obtained
offline using the proposed multi-layer Markov modeling ap-
proach. We then proposed an enhanced T-AGDSA scheme,
where each device adjusts the access parameters to maximize
the estimated network EAR per slot, built on an estimation of
the joint probability distribution of local age and age gain of
an arbitrary device. Numerical results validated our theoretical
study and confirmed the advantage of our proposed schemes
over the existing schemes. Compared with [10]–[25], our work
provides handy tools to design AGDRA schemes of practical
communication systems in more general scenarios. Our work
indicates that how to obtain and how to utilize the knowledge
of age gains properly are both essential, and the performance-
complexity tradeoff needs to be considered in practice.

Synchronous traffic and instantaneous error-free ACKs are
two key assumptions in our work. To extend the applicability,
our future work will relax the former to investigate how
to model heterogeneous behaviors to derive Eq. (18) for
designing basic T-AGDSA and how to apply multi-agent
deep reinforcement learning (MARL) algorithms to cope
with asymmetric age gain beliefs for designing enhanced T-
AGDSA. We will also relax the latter to investigate how
to incorporate additional states to capture the estimated age
gain for designing basic T-AGDSA and how to modify the
MARL algorithm with feedback recovery [35] for designing
enhanced T-AGDSA. Another future direction is to examine
the performance of the proposed schemes in practical systems.

APPENDIX

PROOF OF PROPOSITION 1

Suppose that each update can be instantaneously delivered
without experiencing collisions. Let In,i denote the inter-
arrival time between the (i − 1)-th and i-th updates of the
tagged device n, which is obviously equal to the inter-delivery
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time. Considering that each device independently generates an
update with probability λ at the beginning of each frame and
does not generate updates at other time points, we have

Pr
(
In,i = jD

)
= (1− λ)j−1λ, (41)

for i = 1, 2, . . ., and j = 1, 2, . . ..
Since In,i/D in Eq. (41) has a geometric distribution with

parameter λ, we have

E(In,i) = DE(In,i/D) = D/λ, (42)

E(I2n,i) = D2E
(
(In,i/D)2

)
= D2(2− λ)/λ2. (43)

Let ζn,T be the number of successfully transmitted updates of
device n until the T -th slot. The AAoI of device n defined in
Eq. (3) can be rewritten as

∆n = lim
T→∞

ζn,T
T

1

ζn,T

ζn,T∑
i=1

In,i∑
h=1

h

= lim
T→∞

ζn,T
T

1

ζn,T

ζn,T∑
i=1

(
In,i(In,i + 1)/2

)
=

E
(
In,i(In,i + 1)/2

)
E(In,i)

=
E(I2n,i)
2E(In,i)

+ 1/2. (44)

By substituting Eqs. (42) and (43) into Eq. (44), we can obtain

∆n =
D2(2− λ)/λ2

2D/λ
+

1

2
= D/λ+ (1−D)/2, (45)

which can be served as a lower bound.
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