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Abstract—Designing efficient random access is a vital problem
for urgency-constrained packet delivery in uplink Internet of
Things (IoT), which has not been investigated in depth so far. In
this paper, we focus on unpredictable frame-synchronized traffic,
which captures a number of scenarios in IoT communications,
and generalize prior studies on this issue by considering a
general ALOHA-like protocol, a general single-packet reception
(SPR) channel, urgency-dependent throughput (UDT) based on
a general urgency function, and the dynamic programming
optimality. With a complete knowledge of the number of active
users, we use the theory of Markov Decision Process (MDP)
to explicitly obtain optimal policies for maximizing the UDT,
and prove that a myopic policy is in general optimal. With
an incomplete knowledge of the number of active users, we
use the theory of Partially Observable MDP (POMDP) to seek
optimal policies, and show that a myopic policy is in general
not optimal by presenting a counterexample. Because of the
prohibitive complexity to obtain optimal or near-optimal policies
for this case, we propose two practical policies that utilize the
inherent property of our MDP framework and channel model.
Simulation results show that both outperform other alternatives.
The robustness under relaxed system settings is also examined.

Index Terms—Internet of Things, random access, stochastic
optimal control, urgency constraint, delivery deadline

I. INTRODUCTION

A. Background

RECENTLY there have been increasing demands for wire-
less technology to support real-time services in many

application scenarios of the Internet of Things (IoT) [1]–[3],
such as cooperative surveillance in sensor networks, cross-
traffic assistance in vehicular-to-anything (V2X) networks, and
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process automation in industrial IoT. One common charac-
teristic of packet delivery in these scenarios, termed as the
urgency constraint, is that each packet is associated with a
predefined strict deadline, contributes a fixed or higher reward
when being earlier successfully delivered within its deadline,
but is no longer useful after the deadline expiration.

Uplink IoT systems usually need to serve a large population
of uncoordinated users with unpredictable traffic. For this
canonical situation, achieving stringent performance targets
under the urgency constraint is a challenging task due to
the inherent coupling of delivery urgency and mutual inter-
ference. As a promising approach for this issue, ALOHA-
like random access [4], [5] has been widely adopted in
various IoT systems. Its basic idea is to allow the users to
directly access certain radio resources in a contention-based
manner without establishing a connection (e.g., RTS/CTS in
WiFi, grant procedure in LTE). Such an access pattern not
only requires no orthogonal resource preallocation, which is
desirable for efficient resource utilization under unpredictable
traffic, but also avoids the signaling overhead and waiting time
needed for connection establishment, which is desirable for the
urgency constraint. However, it results in potential collisions a-
mong simultaneous packet transmissions, thus jeopardizing the
network performance, especially for limited radio resources.
So, it is strongly required to develop an ALOHA-like protocol
that utilizes the radio resources timely and efficiently.

B. Related Work

Considerable efforts have been made to design p-fixed
slotted ALOHA, where the transmission probability p always
keeps constant, under the urgency constraint. For saturated
traffic under the classical collision channel without retransmis-
sions, [6] computed the closed-form optimal p for maximizing
the timely delivery ratio (TDR), defined as the percentage of
packets delivered successfully before a given deadline. [7]
extended this work to support an arbitrary allowed number
of retransmissions using a recursive algorithm, while [8] ex-
tended this work to consider a threshold-based multiple-packet
reception (MPR) channel [9] using a fixed-point iteration. For
frame-synchronized traffic under the collision channel, [10]
proposed a recursive algorithm to analyze the throughput, and
investigated the asymptotic behavior of the optimal p for max-
imizing the throughput. For unsynchronized periodic traffic
under an SIR channel, [11] characterized the TDR in a large-
scale D2D network based on the joint use of an absorbing
Markov chain and the meta distribution of the SIR. Both [10],
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[11] assumed no retransmission limit. For Bernoulli traffic
under the collision channel, [12], [13] used stationary Markov
chains to derive the optimal p for maximizing the TDR under
non-retransmission and non-retransmission-limit mechanisms,
respectively. For a single Bernoulli-traffic user competing with
saturated users under the collision channel, [7], [14] used
stationary Markov chains to analyze the throughput of this
user for an arbitrary allowed number of retransmissions.

To remove the restriction of fixed p, there has been an
increasing interest in studying p-dynamic slotted ALOHA,
where p changes according to local observations, under the
urgency constraint. For saturated traffic under the threshold-
based MPR channel, [8] proposed to use the statistics of
consecutive slots to estimate the number of active users that
may suddenly changes, and then adjust p to maximize the TDR
based on this estimation. For frame-synchronized traffic, [15]
proposed to myopically adjust p for maximizing the instanta-
neous throughput under the collision channel when the number
of active users is always known, and [16] proposed to simply
double or halve p based on the previous channel feedback
under the threshold-based MPR channel when the number of
active users is unknown; both [15], [16] applied absorbing
Markov chain modeling for analysis. However, [8], [15], [16]
adopted urgency-independent decision rules to adjust p, which
may limit the performance under the urgency constraint.

There also have been many p-dynamic slotted ALOHA
schemes without the urgency constraint. Throughput maxi-
mization is considered in [17]–[21]. [17] proposed an idea
that utilizes the previous channel feedback to estimate the
probability distribution of the number of active users in a
Bayesian manner and then myopically adjusts p. A simplified
implementation of this idea, called the pseudo-Bayesian algo-
rithm, was developed in [17] for the collision channel with
Poisson traffic. Under the collision channel with interrupted
Poisson traffic, [18] used the statistics of consecutive idle
and collision slots to accelerate the tracking process of the
number of active users and then myopically adjust p in a
timely manner. Under the collision channel with a general
traffic pattern, [19] proposed to introduce random splitting
upon collisions and myopically adjust p in a pseudo-Bayesian
manner [17]. This work was extended by [20] to support
successive interference cancellation (SIC), and by [21] to
support multichannel systems. Under the collision channel
with generate-at-will traffic, to improve the age of information
(AoI), [22] proposed an age-dependent scheme that allows
each user to transmit with a fixed probability p only if its cor-
responding AoI exceeds a fixed threshold. Under the collision
channel with Bernoulli traffic, [23] proposed a more general
age-dependent scheme that allows each user to transmit with
a dynamic probability p if its corresponding age gain exceeds
a certain threshold, which could be computed adaptively or
set as a fixed value. The works using other knowledge (e.g.
queuing delay, queue length) for improving AoI can be found
in [24], [25]. Under the SINR-based MPR channel [9] with
Poisson traffic, [26] proposed average-reward Markov Deci-
sion Process (MDP) and Partially Observable MDP (POMDP)
formulations to obtain stationary optimal backlog-minimizing
policies for adjusting both p and transmission power in known-

and unknown-backlog cases, respectively. The works using
other dynamic optimization techniques (e.g. game theory,
decentralized MDP) to adjust p can be found in [27], [28].
Note that [17]–[21], [26]–[28] assumed that any packet can be
delivered in however much time, thus the modeling approaches
therein are inapplicable under the urgency constraint. Also
note that [22]–[25] assumed undelivered older packets to be
replaced by new packets, which causes an extremely strict
“deadline” (in generate-at-will traffic) or an unpredictable
“deadline” (in Bernoulli traffic), so the modeling approaches
therein cannot be used to exactly characterize the behavior
under the urgency constraint.

C. Motivation and Contributions

In general, p-dynamic slotted ALOHA can be seen as a
sequential access decision problem under certain observations;
however, previous schemes under the urgency constraint [8],
[15], [16] were designed for pursuing low complexity but
without a principle of dynamic programming optimality. In-
stead, in this paper, we study optimal schemes to maximize the
long-run performance with a focus on the frame-synchronized
traffic that captures a number of IoT scenarios [1]–[3], [29],
[30]. Similar to [26], we pose the access problem for different
knowledge of the number of active users as an MDP and a
POMDP, respectively. Although the idea of using MDPs and
POMDPs in random access is not new [26], [31], our study
is different because the urgency constraint plays a nontrivial
role in decision making, which not only leads to defining time-
dependent decision rules but also leads to answering a number
of fundamental questions:

(i) How does the urgency constraint affect optimal policies?
(ii) Under the urgency constraint, under what conditions

does there exist an easily implementable optimal policy,
e.g., a time-independent deterministic Markovian optimal
policy?

(iii) Under the urgency constraint, when it is difficult to obtain
an easily implementable optimal policy, how to compute
a quasi-optimal policy efficiently?

Note that the aforementioned schemes [6]–[8], [10]–[16] only
take into account the deadline of the urgency constraint, but
ignore the time value of successful transmissions1.

Our key contributions lie in the following problem formu-
lation and analysis.

(i) To characterize the time value of successful transmission-
s, built on a quite general non-increasing urgency function
(which can be chosen according to a specific application),
we generalize the traditional throughput metric to intro-
duce a new metric: urgency-dependent throughput (UDT),
which is defined as the long-run average expected rewards
of successful transmissions per slot under the urgency
constraint. The design objectives in [7], [10]–[16] can be
seen as particular cases of maximizing the UDT here. In
addition, to abstract channel models for the MAC layer
of wireless networks, we consider a general single-packet

1A successful transmission is worth more now than a successful transmis-
sion in the future for its intended application.
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reception (SPR) channel (i.e., a channel model where at
most one packet has a chance to be successfully received
when multiple packets overlap on the channel), which
includes those considered in [6], [7], [10], [12], [13], [15]
as particular cases.

(ii) To improve the maximum attainable UDT, we propose a
novel p-dynamic slotted ALOHA protocol, which allows
each active node to determine the current transmission
probability with certainty based on not only the knowl-
edge of the current number of active users but also the
current delivery urgency. The previously known schemes
for the frame-synchronized traffic [10], [15] can be seen
as particular cases here.

(iii) For an idealized environment where each user always has
a complete knowledge of the current number of active
users, we use the theory of MDP to explicitly obtain
optimal policies for maximizing the UDT, and prove
that a myopic policy is in general optimal, which has
been commonly believed in the literature [15], [16] as
folklore knowledge2. We further specify a bit surprising
fact3 that the general SPR channel assumption and the
non-increasing property of the urgency function are both
essential to such optimality.

(iv) For a realistic environment where each user has an incom-
plete knowledge of the current number of active users,
we use the theory of POMDP to seek optimal policies,
and show that a myopic policy is in general not optimal
by presenting a counterexample. Then, because of the
prohibitive complexity to obtain optimal or near-optimal
policies for this case, we propose a practical policy that
utilizes the inherent property of our MDP framework. In
addition, to reduce the activity belief updating complexity
that grows linearly with the number of users, based on the
reception property of the collision channel, we propose
a pseudo-Bayesian belief approximation whose updating
relies on two changeable parameters Mt, αt, which will
be described in detail in Section VI-B, to specify a
binomial distribution.

Our modeling approach can include the approaches in [10],
[15], [16] as particular cases4. It is worth noting that, although
the idealized environment is difficult to implement in practice,
its performance will upper bound the maximum attainable
UDT in the realistic environment, and its study will inspire the
design of two practical policies for the realistic environment.

The remainder of this paper is organized as follows. The
system model and related application scenarios are specified in
Section II, and our access protocol is proposed in Section III.
Optimal policies for the idealized and realistic environments

2Both [15], [16] believed that the myopic policy is optimal for maximizing
the traditional throughput (i.e., a particular case of the UDT) under the
collision channel (i.e., a particular case of the general SPR channel), but
lacking a formal proof.

3Under the general SPR channel, a myopic policy is in general optimal
means that there exists a time-independent optimal decision rule at each slot
that aims to transmit packets as many as possible. Motivated by this fact, it
is expected that under an arbitrary time-independent reception channel, the
optimality of a myopic policy still holds.

4The modeling approaches in [10], [15], [16] are all based on absorbing
Markov chains, which can be seen as finite-horizon MDPs with special
policies.

are studied in Sections IV and V, respectively. Two practical
policies for the realistic environment are presented in Sec-
tion VI. Numerical results are provided in Section VII to verify
our study. Section VIII draws final conclusions.

II. SYSTEM MODEL AND APPLICATION SCENARIOS

Consider a single-hop uplink system with global synchro-
nization, consisting of a finite number, N ≥ 2, of users and an
access point (AP). The global time axis is based on a frame-
by-frame structure, and each frame consists of D ≥ 1 equal-
duration slots. The slots in a frame are indexed from slot 1
to D and the slot index set is denoted by T , {1, 2, . . . , D}.
Under the frame-synchronized traffic, each user generates a
single-slot packet with probability λ ∈ (0, 1] at the beginning
of each frame, cannot generate packets at other time points,
and generates at most one packet per frame. Each packet is
associated with a delivery deadline D slots, that is, a packet
generated in a frame will become useless and be removed at
the end of this frame.

Each user is allowed to send a packet only at the beginning
of a slot. We consider a general SPR channel, i.e., given
that 0 ≤ k ≤ N packets are being transmitted in one slot,
one packet is successfully received with probability σk, and
no packet is successfully received with probability 1 − σk,
where 0 = σ0 ≤ σ1, σ2, . . . , σN ≤ 1. Both the collision
model (with or without channel errors) where 0 = σ0 =
σ2 = · · · = σN < σ1 and the capture model where
0 = σ0 < σN < · · · < σ2 < σ1 can be seen as particular cases
here. After a reception, the AP instantaneously broadcasts an
acknowledgement (ACK) if this reception is successful, but
instantaneously broadcasts a negative ACK (NACK) otherwise,
both via an error-free control channel. Assume that both ACK
and NACK transmission time are negligible compared with
the slot length [10], [16].

If a packet is successfully received at slot t of a frame, we
assume that the AP obtains Γt units of reward, where 0 <
Γt ≤ 1 is a non-increasing urgency function with respect to
t; otherwise, the AP obtains no reward. We further define the
UDT as the long-run average expected reward obtained by the
AP per slot5. The urgency function can be specified according
to a given application, such as Γt = gh(t−1) or t−h with
0 < g ≤ 1 and h ≥ 0 in online advertisement placement [33]
or health monitoring [34].

At the beginning of a slot, we say a user is active if it
has a packet to transmit; otherwise it is inactive. Having a
complete knowledge of the values of N , D, λ, σ0, . . . , σN ,
and Γ1, . . . ,ΓD, at the beginning of each slot, each active user
follows a common p-dynamic slotted ALOHA protocol, which
will be specified in Section III, to determine stochastically
whether to transmit.

Related application scenarios for frame-synchronized traffic
can be found as follows.

Industrial control. In a periodic event-triggered control
implementation [29] for closed-loop process control, mul-
tiple sensor nodes associated to a process are required to

5When Γt = 1, the UDT reduces to the conventional throughput [10], [15],
and the UDT divided by Nλ

D
reduces to the TDR [16]. When Γt = gt−1

with some 0 < g < 1, the UDT reduces to the throughput with discount [32].
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measure the plant outputs and validate the event conditions
synchronously and periodically. Then, each of the sensor nodes
satisfying these conditions would send fresh measurements
via a small-sized packet (usually a few bytes in length) to
a machine programmable logic controller (PLC), so that the
PLC can recompute the controller output and take necessary
actions for the process.

Group-based event detection. Consider a group-based event
detection application [35] where a number of sensor nodes
observe the same area of interest for fault-tolerance purposes.
Upon an event (or a remote request) occurrence, each node
in the waking state simultaneously tries to send a report to a
controller. Then the controller detects an event if it receives a
certain number of positive reports from different nodes, within
a certain time interval since the event occurrence.

III. PROTOCOL DESIGN

In this section, we propose a p-dynamic slotted ALOHA
protocol to specify how each active user determines its trans-
mission probability based on the current delivery urgency and
local knowledge of the number of active users. During an
arbitrary frame, we denote random variable nt as the actual
number of active users at the beginning of slot t. Clearly,
nt ∈ N , {0, 1, . . . , N}. We distinguish two environments
for available information to obtain the transmission probability.

(i) Idealized environment: at the beginning of every slot t ∈
T , each active user knows the actual value of nt, and
uses the values of t and nt to compute the transmission
probability pt by an access function π̂t : N → [0, 1]. So,
an access policy for this environment can be defined as
π̂ , [π̂1, π̂2, . . . , π̂D].

(ii) Realistic environment: at the beginning of every slot t ∈
T , based on the available information of traffic pattern, all
past AP feedback, and all past transmission probabilities,
each active user i obtains an activity belief, denoted by
a probability vector bi,t , [bi,t(0), bi,t(1), . . . , bi,t(N)]
where bi,t(n) is the conditional probability that nt = n.
We also require active users to adopt the same trans-
mission probability if they have the same activity belief
at the same time. In this manner, it is obvious that
b1,t = · · · = bN,t = bt since the available information
becomes global. Let Bt denote the set of all possible
values of bt in [0, 1]N+1. Then, each active user uses
the values of t and bt to compute the transmission
probability pt by an access function πt : Bt → [0, 1].
So, an access policy for this environment can be defined
as π , [π1, π2, . . . , πD].

An example to illustrate how the proposed protocol works is
shown in Fig. 1.

IV. DYNAMIC OPTIMIZATION FOR THE IDEALIZED
ENVIRONMENT

In this section, we cast the access problem for the idealized
environment as an MDP, which formally leads to optimal
policies, and prove that a myopic policy is in general optimal.

A. MDP Formulation

From the access scheme specified in Section III, we see
that the state process (nt)t∈T with the state space N can be
viewed as a discrete-time finite-horizon, finite-state Markov
chain. Now, we formulate this Markov chain (nt)t∈T as an
MDP by describing the following definitions.

(i) Actions: At the beginning of each slot t ∈ T , the action of
each active user is its transmission probability pt taking
values in the action space [0, 1].

(ii) State Transition Function: Define the state transition
function βt(n

′, n, p) , Pr(nt+1 = n′|nt = n, pt = p).
For each t ∈ T \ {D}, each n, n′ ∈ N , and each
p ∈ [0, 1], we have

βt(n
′, n, p) =


η(n, p), if n− n′ = 1,

1− η(n, p), if n− n′ = 0,

0, otherwise,
(1)

where η(n, p) ,
∑n

k=0 σk

(
n
k

)
pk(1− p)n−k.

(iii) Reward Function: Let rt(n, p) denote the expected re-
ward gained at slot t by the AP when nt = n and pt = p.
So, for each t ∈ T , each n ∈ N , and each p ∈ [0, 1], we
have

rt(n, p) = Γtη(n, p). (2)

A policy for the idealized environment defined in Sec-
tion III, π̂, can be seen as a deterministic Markovian policy
here. Denote by Π̂MD the set of all possible such polices.

Let Rπ̂(n) represent the expected total reward accumulated
over the time horizon T if the policy π̂ is used and n1 = n,
which is defined by

Rπ̂(n) , Eπ̂
{ D∑

t=1

rt
(
nt, π̂t(nt)

)
| n1 = n

}
. (3)

Averaging over all possible values of n1, the UDT under the
policy π̂ can be computed by

UDTπ̂ =
1

D

∑
n∈N

(
N

n

)
λn(1− λ)N−nRπ̂(n). (4)

B. MDP Solution

Our objective is to compute

π̂∗ ∈ argmax
π̂∈Π̂MD

UDTπ̂. (5)

Since the MDP formulation in Section IV-A enjoys a finite
horizon, a finite state space, a compact action space, bounded
rewards, and a reward function and a state transition function
that are both continuous in p, we obtain from [36, Prop. 4.4.3,
Ch. 4] that π̂∗ is optimal over all types of policies. Apply-
ing the backward induction algorithm [36] to the following
recursive equations:

U∗
D(n) = max

p∈[0,1]
rD(n, p), ∀n ∈ N ,

U∗
t (n) = max

p∈[0,1]
rt(n, p)

+
∑
n′∈N

βt(n
′, n, p)U∗

t+1(n
′), ∀n ∈ N , ∀t ∈ T \ {D},

(6)
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an arbitrary frame

user 1

user 2

user 3

user 4

user 5

user 6

active inactive inactive inactive inactive inactive

inactive inactive inactive inactive inactive inactive

active active active active active active

active active active active active active

active active inactive inactive inactive inactive

active active active active active inactive

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

successful

transmission

unsuccessful

transmission

base station
ACK

p1 p2 p3 p4 p5 p6
transmission

probabilities

]1,0[:π tt  B! ®

NACK

Γ5 units of rewardΓ2 units of reward

(a)

(b)

(c)

Fig. 1: An example of the working procedure of the proposed protocol for N = 6 and D = 6. (a) The working procedure. (b)
Γt = t−0.1 and UDT = Γ1+Γ2+Γ5+Γ6

D = 0.6034. (c) Γt = 0.95t−1 and UDT = Γ1+Γ2+Γ5+Γ6

D = 0.5897.

where U∗
t (n) is known as the MDP value function (defined

as the maximum expected total reward from slot t to D
when nt = n), can formally lead to π̂∗. However, it requires
computing global maximizers of a number of real-coefficient
univariate polynomials defined on [0, 1], which is still compu-
tationally demanding.

C. Optimality of Myopic Policy

Define a myopic policy π̂myo , [π̂myo
1 , π̂myo

2 , . . . , π̂myo
D ] ∈

Π̂MD that maximizes the immediate one-step reward, i.e.,

π̂myo
t (n) ∈ argmax

p∈[0,1]

rt(n, p), ∀n ∈ N , ∀t ∈ T . (7)

For tractable analysis, we introduce a few more definitions
which will be useful later.

Let Umyo
t (n) denote the expected total reward from slot t

to D for the state nt = n when each active user adopts the
myopic decision rules at slots t, t + 1, . . . , D. So, using the
finite-horizon policy evaluation algorithm [36], we have

Umyo
D (n) = rD

(
n, π̂myo

D (n)
)
, ∀n ∈ N ,

Umyo
t (n) = rt

(
n, π̂myo

t (n)
)

+
∑
n′∈N

βt

(
n′, n, π̂myo

t (n)
)
Umyo
t+1(n

′), ∀n ∈ N , ∀t ∈ T \ {D}.

(8)
By Eqs. (2), (6), (8), and η∗(n) , maxp∈[0,1] η(n, p), we have

U∗
t (0) = Umyo

t (0) = 0, ∀t ∈ T , (9)
U∗
D(n) = Umyo

D (n) = ΓDη∗(n), ∀n ∈ N . (10)

Let U⋄
t (n, p) denote the expected total reward from slot

t to D for the state nt = n when each active user adopts

the transmission probability pt = p at slot t and the optimal
decision rules at slots t+ 1, t+ 2, . . . , D. So, we have

U⋄
D(n, p) = rD(n, p), ∀n ∈ N ,

U⋄
t (n, p) = rt(n, p)

+
∑
n′∈N

βt(n
′, n, p)U∗

t+1(n
′), ∀n ∈ N , ∀t ∈ T \ {D}.

(11)

We are ready for proving the optimality of π̂myo.

Theorem 1. For arbitrary N ≥ 1, D ≥ 1, 0 ≤
σ1, σ2, . . . , σN ≤ 1, and non-increasing Γt, a myopic policy
π̂myo is optimal for the idealized environment.

Proof. When D = 1, π̂myo is optimal by Eqs. (6) and (8). It
remains to consider the case D > 1.

As U∗
t (0) = Umyo

t (0) has been settled in Eq. (9), we shall
prove, for each n ∈ N \ {0}, that (i) U∗

t (n) = Umyo
t (n) by

induction on t from t = D down to 1 and (ii) Γt−1−U∗
t (n)+

U∗
t (n− 1) ≥ 0 by induction on t from t = D down to 2.
First, when t = D, by 0 ≤ σ1, σ2, . . . , σN ≤ 1, the non-

increasing property of Γt, and Eq. (10), we have U∗
D(n) =

Umyo
D (n) and

ΓD−1 − U∗
D(n) + U∗

D(n− 1)

= ΓD−1 − ΓD + ΓD

(
1− η∗(n) + η∗(n− 1)

)
≥ 0,

for each n ∈ N \{0}, thereby establishing the induction basis.
Next, when t ∈ T \{D}, we assume (i) U∗

t+1(n) = Umyo
t+1(n)

and (ii) Γt−U∗
t+1(n)+U∗

t+1(n−1) ≥ 0 for each n ∈ N \{0}.
By Eqs. (1), (2), and (11), we have

U⋄
t (n, p) = rt(n, p) +

∑
n′∈N

βt(n
′, n, p)U∗

t+1(n
′)

=
(
Γt − U∗

t+1(n) + U∗
t+1(n− 1)

)
η(n, p) + U∗

t+1(n). (12)
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Taking the derivative of Eq. (12) with respect to p derives that
d

dpU
⋄
t (n, p) = (Γt − U∗

t+1(n) + U∗
t+1(n − 1)) d

dpη(n, p). By
hypothesis (ii), we obtain that U⋄

t (n, p) attains its maximum
when p = π̂myo

t (n) ∈ argmaxp∈[0,1] η(n, p), i.e.,

U∗
t (n) = U⋄

t

(
n, π̂myo

t (n)
)

=
(
Γt − U∗

t+1(n) + U∗
t+1(n− 1)

)
η∗(n) + U∗

t+1(n). (13)

To prove Γt−1−U∗
t (n)+U∗

t (n−1) ≥ 0, we further consider
the following two cases.

Case 1: When n = 1, by 0 ≤ σ1 ≤ 1, the non-increasing
property of Γt, and Eqs. (9), (13), we have

Γt−1 − U∗
t (1) + U∗

t (0)

= Γt−1 −
(
Γt − U∗

t+1(1) + U∗
t+1(0)

)
η∗(1)

− U∗
t+1(1) + U∗

t+1(0)

= Γt−1 − Γt +
(
1− η∗(1)

)(
Γt − U∗

t+1(1)
)
≥ 0.

Case 2: When n ∈ N \ {0, 1}, by 0 ≤ σ1, σ2, . . . , σn ≤ 1,
the non-increasing property of Γt, and Eq. (13), we have

Γt−1 − U∗
t (n) + U∗

t (n− 1)

= Γt−1 −
(
Γt − U∗

t+1(n) + U∗
t+1(n− 1)

)
η∗(n)− U∗

t+1(n)

+
(
Γt − U∗

t+1(n− 1) + U∗
t+1(n− 2)

)
× η∗(n− 1) + U∗

t+1(n− 1)

= Γt−1 − Γt +
(
1− η∗(n)

)(
Γt − U∗

t+1(n) + U∗
t+1(n− 1)

)
+ η∗(n− 1)

(
Γt − U∗

t+1(n− 1) + U∗
t+1(n− 2)

)
≥ 0.

In addition, by hypothesis (i) and Eqs. (7), (8), (11), (13),
we further obtain

U∗
t (n) = rt

(
n, π̂myo

t (n)
)
+
∑
n′∈N

βt

(
n′, n, π̂myo

t (n)
)
U∗
t+1(n

′)

= rt
(
n, π̂myo

t (n)
)
+
∑
n′∈N

βt

(
n′, n, π̂myo

t (n)
)
Umyo
t+1(n

′)

= Umyo
t (n).

So, the inductive step is established.
Since both the base case and the inductive step have been

proved as true, we have U∗
t (n) = Umyo

t (n) for each t ∈ T
and each n ∈ N \ {0}. Furthermore, we obtain that

UDTπ̂∗
=

1

D

∑
n∈N

(
N

n

)
λn(1− λ)N−nU∗

1 (n)

=
1

D

∑
n∈N

(
N

n

)
λn(1− λ)N−nUmyo

1 (n) = UDTπ̂myo
.

The proof is thus complete.

According to Theorem 1, Eqs. (2) and (7), we know that
there exists an optimal transmission probability π̂myo

t (n) for
each t, which is only dependent on the number of active
users n but is independent on the urgency constraint related
parameters t, Γt. Further, we know this optimal transmission
probability becomes smaller when n increases.

D. Discussion

We would like to emphasize that from a technical point of
view, both the non-increasing property of Γt and general SPR
channel are the essentials to the whole proof of Theorem 1.

To this purpose, we provide an example to show that π̂myo

is in general not optimal for the idealized environment without
the non-increasing property of Γt.
Example 1: Given arbitrary N ≥ 1, D ≥ 2, 0 < σ1 ≤ 1, if
Γt < σ1Γt+1 for each t ∈ T \ {D}, computation reveals

Umyo
t (1) < U∗

t (1), ∀t ∈ T \ {D}, (14)

which shows the myopic policy is not optimal. The proof of
inequality (14) is in Appendix A.

We further provide an example to show that π̂myo is in
general not optimal for the idealized environment without the
general SPR channel assumption.
Example 2: Consider a threshold-based MPR channel with
capability γ, i.e., given that 1 ≤ k ≤ N packets are being
transmitted in one slot, all k packets will be successfully
received if 1 ≤ k ≤ γ, and no packet will be successfully
received otherwise. Given arbitrary D ≥ 2, 2 ≤ γ < N , and
Γt = 1 for each t ∈ T , computation reveals

Umyo
t (γ + 1) < U∗

t (γ + 1), ∀t ∈ T \ {D}, (15)

which shows the myopic policy is not optimal. The proof of
inequality (15) is in Appendix B.

It remains an interesting question as to whether the results
in Examples 1–2 hold for all the cases.

V. DYNAMIC OPTIMIZATION FOR THE REALISTIC
ENVIRONMENT

In this section, we cast the access problem for the realistic
environment as a POMDP problem, show that it is infeasible
to obtain optimal or near-optimal policies, and show that a
myopic policy is in general not optimal.

A. POMDP Formulation

Built on the MDP formulation specified in Section IV, we
complete our POMDP formulation by describing the following
definitions.

(i) Observations and Observation Function: At the end of
each slot t ∈ T \ {D}, each active user obtains an
observation ot on the AP feedback, taking values from
the observation space O , {0 (no feedback received),
1 (ACK received), 2 (NACK received)}. The observation
function ωt(o, n, p, n

′) , Pr(ot = o|nt = n, pt =
p, nt+1 = n′) can be obtained by

ωt(o, n, p, n
′)

=



1− (1− p)n

1− η(n, p)
, if o = 2, n = n′, η(n, p) < 1,

(1− p)n

1− η(n, p)
, if o = 0, n = n′, η(n, p) < 1,

1, if o = 1, n− n′ = 1,

0, otherwise,
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for each t ∈ T , each o ∈ O, each n, n′ ∈ N , and each
p ∈ [0, 1].

(ii) Update of the Activity Belief: First, each active user can
obtain from the traffic pattern that

b1 = hλ ,
[
(1− λ)N , Nλ(1− λ)N−1, . . . , λN

]
. (16)

Then, for each t ∈ T \{D}, using Bayes’ rule, bt+1 can
be recursively computed by

bt+1 , θt(b, p, o), (17)

bt+1(n
′) , Pr(nt+1 = n′|bt = b, pt = p, ot = o)

=

∑
n∈N b(n)ωt(o, n, p, n

′)βt(n
′, n, p)

χt(o,b, p)
,

for each n′ ∈ N , where

χt(o,b, p) =
∑
n∈N

b(n)
∑

n′′∈N

ωt(o, n, p, n
′′)βt(n

′′, n, p).

It has been shown in [37] that bt is a sufficient statistic
for computing optimal pt for each t ∈ T .

A policy for the realistic environment defined in Section III,
π, can be seen as a deterministic Markovian policy here.
Denote by ΠMD the set of all possible such polices.

Let Rπ(hλ) denote the expected total reward accumulated
over the time horizon T when b1 = hλ and the policy π is
employed, which is defined as

Rπ(hλ) , Eπ
{ D∑

t=1

rt
(
nt, πt(bt)

)
| b1 = hλ

}
.

Denote by UDTπ the UDT under the policy π. We have
UDTπ = 1

DRπ(hλ).

B. POMDP Solution

Our objective is to compute

π∗ ∈ argmax
π∈ΠMD

UDTπ.

Since the POMDP formulation in Section IV-A enjoys a finite
horizon, a finite state space, a compact action space, bounded
rewards, and a reward function and χt(o,b, p) that are both
continuous in p, we obtain from [36, Prop. 4.4.3, Ch. 4] and
[38, Thm. 7.1, Ch. 6] that π∗ is indeed optimal over all types
of policies. Solving the following recursive equations:

V ∗
D(b) = max

p∈[0,1]

∑
n∈N

b(n)rD(n, p), ∀b ∈ BD,

V ∗
t (b) = max

p∈[0,1]

∑
n∈N

b(n)rt(n, p) +
∑
o∈N

χt(o,b, p)

× V ∗
t+1

(
θt(b, p, o)

)
, ∀b ∈ Bt, ∀t ∈ T \ {D}.

(18)

where V ∗
t (b) is known as the POMDP value function (defined

as the maximum expected total reward from slot t to D
when bt = b), can formally lead to π∗. However, it is
computationally intractable due to the infinite belief state space∪

t∈T Bt and the infinite action space [0, 1]. Even if the action
space is discretized in order to compute a near-optimal policy,
it is still computationally prohibitive due to super-exponential
growth in the POMDP value function complexity.

C. A counterexample for the Optimality of the Myopic Policy

In this subsection, we show that a myopic policy πmyo ,
[πmyo

1 , πmyo
2 , . . . , πmyo

D ] ∈ ΠMD where

πmyo
t (b) ∈ argmax

p∈[0,1]

∑
n∈N

b(n)rt(n, p), ∀t ∈ T , ∀b ∈ Bt,

(19)
is not in general optimal for the realistic environment by
presenting a counterexample.

Let V myo
t (b) denote the total expected reward from slot t

to D for bt = b when each active user adopts the myopic
decision rules at slots t, t + 1, . . . , D. So, using the finite-
horizon policy evaluation algorithm [37], we have

V myo
D (b) =

∑
n∈N

b(n)rD
(
n, πmyo

D (b)
)
, ∀b ∈ BD,

V myo
t (b) =

∑
n∈N

b(n)rt
(
n, πmyo

t (b)
)
+
∑
o∈N

χt

(
o,b, πmyo

t (b)
)

× V myo
t+1

(
θt
(
b, πmyo

t (b), o
))

, ∀b ∈ Bt, ∀t ∈ T \ {D}.
(20)

By Eqs. (18) and (20), we have

V ∗
D(b) = V myo

D (b), ∀b ∈ BD. (21)

Let V ⋄
t (b, p) denote the total expected reward from slot t

to D for bt = b when each active user adopts pt = p and the
optimal decision rules at slots t+1, t+2, . . . , D. So, we have

V ⋄
D(b, p) =

∑
n∈N

b(n)rD(n, p), ∀b ∈ BD,

V ⋄
t (b, p) =

∑
n∈N

b(n)rt(n, p) +
∑
o∈N

χt(o,b, p)

× V ∗
t+1

(
θt(b, p, o)

)
, ∀b ∈ Bt, ∀t ∈ T \ {D}.

(22)

A counterexample is shown as follows.
Example 3: Consider an example with N = 2, D ≥ 2,
0 ≤ σ2 < σ1 = 1, Γt = 1 for each t ∈ T , and
bD−1 = [b(0), b(1), b(2)] satisfying 0 < b(2) ≤ 1

2−2σ2
b(1).

Now we compare the following two policies: 1) πmyo, and 2)
πcom that adopts pD−1 = 1

2−σ2
and the myopic decision rule

at slot D. Computation reveals that

V myo
D−1(b) < V ⋄

D−1

(
b,

1

2− σ2

)
, (23)

which shows that πmyo is not optimal here. The proof of
Inequality (23) is provided in Appendix C. In this example,
when D = 2, σ2 = 0.5, and λ ∈ (0, 2

3 ], we can obtain

UDTπcom
− UDTπmyo

UDTπmyo =
V ⋄
1 (b,

2
3 )− V myo

1 (b)

V myo
1 (b)

∈ (0, 0.0873],

showing that πcom outperforms πmyo by up to 8.73% in terms
of the UDT.

VI. TWO PRACTICAL POLICIES FOR THE REALISTIC
ENVIRONMENT

Because of the prohibitive complexity to obtain optimal or
near-optimal policies from the POMDP framework, in this sec-
tion, we propose a practical policy for the general SPR channel
and another for the collision channel. These two policies are
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both based on the QMDP approximation technique [39] owing
to the following two reasons. The first is that the QMDP
method approximates the POMDP value functions relying
on both the MDP value functions and action-value functions
(Q-functions), which allows look-ahead designs and a good
complexity-benefit tradeoff. The second is that the optimality
of the myopic policy in our MDP framework can be utilized
to further reduce the computational complexity of MDP value
functions in the QMDP method.

A. A Simplified QMDP-Based Policy for a general SPR chan-
nel

The original QMDP approximation technique [39] approx-
imates V ∗

t (b) by

V̂t(b) = max
p∈[0,1]

∑
n∈N

b(n)Q∗
t (n, p), ∀b ∈ Bt,

where

Q∗
D(n, p) = rD(n, p), ∀n ∈ N ,

Q∗
t (n, p) = rt(n, p)

+
∑
n′∈N

β(n′, n, p)U∗
t+1(n

′), ∀n ∈ N , ∀t ∈ T \ {D},
(24)

are the optimal Q-functions for the MDP formulation present-
ed in Section IV.

Although the original QMDP approximation can be used to
obtain good policies efficiently, solving U∗

t+1(n
′) in Eq. (24)

for each n′ ∈ N and each t ∈ T \{D} is still computationally
demanding in practice, as mentioned in Section IV-B. So, by
Theorem 1, we replace U∗

t+1(n
′) with Umyo

t+1(n
′) in Eq. (24) to

generate a simplified QMDP-based policy πsimQ for the gen-
eral SPR channel with simpler and more efficient updates on
V̂t(b). The algorithm to generate πsimQ is formally described
in Algorithm 1.

Algorithm 1 The algorithm to generate πsimQ for the general
SPR channel

1: Set t = 1. Each active user obtains b1 = hλ.
2: Given bt = b, each active user obtains

πsimQ
t (b) ∈ argmax

p∈[0,1]

∑
n∈N

b(n)Q∗
t (n, p),

where Q∗
t (n, p) is obtained by Eq. (24) with U∗

t+1(n
′) =

Umyo
t+1(n

′) for each n′ ∈ N .
3: If t ∈ T \{D}, given bt = b, pt = πsimQ

t (b), ot = o, each
active user obtains bt+1 by Eq. (17). Otherwise, stop.

4: Set t = t+ 1 and go to step 2.

B. A Further Simplified QMDP-Based Policy for the collision
channel

As shown in Algorithm 1, πsimQ for the general SPR channel
requires the full Bayesian updating of the activity belief bt.
In this subsection, based on πsimQ, we propose a further
simplified QMDP-based policy πfurQ for the collision channel,

which allows each active user to update bt (in a pseudo-
Bayesian manner) more efficiently relying on the special
reception property of such a channel.

Denote by bbd
t ,

[
bbd
t (0), bbd

t (1), . . . , bbd
t (N)

]
an approxi-

mation of bt. It is specified by a binomial distribution with a
parameter vector (Mt, αt), i.e., when (Mt, αt) = (M,α),

bbd
t (n) =

{(
M
n

)
αn(1− α)M−n, if 0 ≤ n ≤ M,

0, otherwise.
(25)

In such a way, each active user only needs to maintain the
parameter vector (Mt, αt).

By Eq. (16), we have (M1, α1) = (N,λ) and b1 =
bbd
1 . For each t ∈ T \ {D}, given (Mt, αt) = (M,α),

bbd
t = bbd, and pt = p, we first compute an intermediate

variable bmed
t+1 ,

[
bmed
t+1(0), b

med
t+1(1), . . . , b

med
t+1(N)

]
and then

update (Mt+1, αt+1). Three cases for different observations
are considered as follows.

The case ot = 0: By the Bayes’ rule, we obtain

bmed
t+1(n

′) =

∑
n∈N bbd(n)ωt(0, n, p, n

′)βt(n
′, n, p)

χt(0,bbd, p)

=


(
M
n′

)(
α−αp
1−αp

)n′(
1− α−αp

1−αp

)M−n′

, if 0 ≤ n′ ≤ M,

0, otherwise,

which follows the form of Eq. (25). So, we require bbd
t+1 to

directly take the value of bmed
t+1 and set

(Mt+1, αt+1) =
(
M,

α− αp

1− αp

)
. (26)

The case ot = 1: When M > 1, we have αp < 1. By the
Bayes’ rule, we obtain

bmed
t+1(n

′) =

∑
n∈N bbd(n)ωt(1, n, p, n

′)βt(n
′, n, p)

χt(1,bbd, p)

=


(
M−1
n′

)(
α−αp
1−αp

)n′(
1− α−αp

1−αp

)M−1−n′

, if 0 ≤ n′ < M,

0, otherwise,

which still follows the form of Eq. (25). We then require bbd
t+1

to again directly take the value of bmed
t+1 and set

(Mt+1, αt+1) =
(
M − 1,

α− αp

1− αp

)
. (27)

When M = 1, it is obvious that

(Mt+1, αt+1) = (0, 0). (28)

The case ot = 2: When αp < 1, by the Bayes’ rule, we
obtain

bmed
t+1(n

′) =

∑
n∈N bbd(n)ωt(2, n, p, n

′)βt(n
′, n, p)

χt(2,bbd, p)

=

[(
M

n′

)(
α(1− p)

)n′(
1− α(1− p)

)M−n′

− (1− αp)M
(
M

n′

)(α− αp

1− αp

)n′(
1− α− αp

1− αp

)M−n′

− σMαp(1− αp)M−1

×
(
M − 1

n′

)(α− αp

1− αp

)n′(
1− α− αp

1− αp

)M−1−n′]
×
(
1− (1− αp)M − σMαp(1− αp)M−1

)−1
,
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for n′ = 0, 1, . . . ,M , which does not follow the form of
Eq. (25). For the sake of consistency, under the premise of
unchanged mean, we modify the value of bmed

t+1 to follow the
form of Eq. (25), and set

(Mt+1, αt+1) =

(
M,
(
α− (α− αp)(1− αp)M−1

− σαp(1− αp)M−2(Mα−Mαp− α+ 1)
)

×
(
1− (1− αp)M − σMαp(1− αp)M−1

)−1
)
. (29)

When αp = 1, it is obvious that

(Mt+1, αt+1) = (M, 1). (30)

Based on the above belief approximation, the algorithm to
generate πfurQ is formally described in Algorithm 2.

Algorithm 2 The algorithm to generate πfurQ for the collision
channel

1: Set t = 1. Each active user obtains (M1, α1) = (N,λ).
2: Given (Mt, αt) = (M,α), each active user obtains

πfurQ
t (M,α) ∈ argmax

p∈[0,1]

M∑
n=0

(
M

n

)
αn(1− α)M−nQ∗

t (n, p).

where Q∗
t (n, p) is obtained by Eq. (24) with U∗

t+1(n
′) =

Umyo
t+1(n

′) for each n′ ∈ N .
3: If t ∈ T \ {D}, given (Mt, αt) = (M,α),

pt = πfurQ
t (M,α), ot = o, each active user obtains

(Mt+1, αt+1) by Eqs. (26)–(30) accordingly. Otherwise,
stop.

4: Set t = t+ 1 and go to step 2.

Evaluating the belief approximation error at slot t under
πfurQ is a complicated issue since it is dependent on all
previous channel observations before slot t. Obviously, if no
NACK is observed before slot t, there is no error at slot t.
But as soon as a NACK is observed at slot t′ (t′ < t), each
update at slot t′, t′ + 1, . . . , t − 1 would yield a complicated
(positive or negative) impact on the error at slot t, which is
difficult to be quantified. Roughly speaking, as t increases, the
error fluctuation at slot t would increase, so the approximation
effectiveness at slot t would decrease. In Table I, we provide
realizations of bt and its approximation bbd

t when πfurQ

is used for N = 8, λ = 0.8, D = 20, σ1 = 0.95,
σ0 = σ2 = · · · = σN = 0. The Bhattacharyya distance
between bt and bbd

t is at most 0.011738, showing that the
approximation method is effective. Furthermore, as D usually
takes a small value in real-time services [1]–[3], it is expected
that our method would enjoy acceptable effectiveness, which
will be examined in Section VII.
Remark: Under πsimQ, the computational complexity of matrix
multiplication to obtain bt at the beginning of slot t is
O(|N |2), the same as under π∗. Under πfurQ, such complexity
is reduced to O(1) owing to the proposed belief approxima-
tion. To generate pt at the beginning of slot t under π∗,
we need to first obtain all possible bt′ in Bt′ for t′ =
t, t+1, . . . , D, and then find global maximizers of

∑D
t′=t |Bt′ |

real coefficient univariate polynomials. To generate pt at the
beginning of slot t under πsimQ or πfurQ, we only need to
find a global maximizer of a polynomial after obtaining bt

and the optimal Q-functions (which are derived by finding
global maximizers of |N | polynomials), owing to the look-
ahead designs and Theorem 1. So, πsimQ and πfurQ both enjoy
significantly lower complexity than π∗.

VII. NUMERICAL RESULTS

To validate the studies in Sections IV–VI, this section
compares the UDT performance of the optimal policy for the
idealized environment π̂∗, the simplified QMDP-based policy
for the realistic environment πsimQ, the further simplified
QMDP-based policy for the realistic environment πfurQ (only
applicable to the collision channel), the myopic policy for the
realistic environment πmyo, the optimal static scheme6 [10] for
the realistic environment πsta, and the D&H scheme7 [16] for
the realistic environment. Γt = t−0.1 and Γt = 0.95t−1 are
both considered8. This section also compares the packet loss
ratio (PLR) of the six schemes under sporadic traffic, which is
a primary concern of high-reliability IoT [2]. Minimizing the
PLR here is identical to maximizing the UDT with Γt = 1.

In the first two subsections, we comply with the system
model specified in Section II to set up the numerical ex-
periments, and shall change the network configuration over
a broad range to examine the impact of access design on
the UDT and PLR. In the third subsection, we relax some
system assumptions to examine the robustness of the proposed
policies. Each result is an average in 10 independent numerical
experiments, each of which lasts for 106 frames, running in
MATLAB over an 8-core AMD Ryzen 7 5800H 3.2GHz CPU
and 16GB memory.

A. Performance: Collision channel

Consider the collision channel with σ1 = 0.95. Figs. 2(a)–
(c) show the UDT as a function of the channel load Nλ/D
for N = 50 and Γt = t−0.1. We observe that πsimQ always
performs best in the realistic environment, that is, enjoys
0.22% – 12.01% improvement over πmyo, 1.85% – 10.78%
improvement over πsta, and 2.15% – 51.45% improvement
over πdah. The reason is obvious that πsta utilizes no feedback
information to optimize its access pattern, πdah utilizes the
feedback information in an unrigorous manner, and πmyo is
only one-step look-ahead. This also conforms that πmyo is
not in general optimal as shown in Section IV-C. Meanwhile,

6A particular policy in ΠMD that allows each active user to adopt an optimal
fixed and identical transmission probability.

7A scheme that allows each active user to adopt the transmission probability
p1 = 1 in the first slot of a frame, pt+1 = pt if ot = 0, pt+1 = min(2pt, 1)
if ot = 1, and pt+1 = pt/2 if ot = 2.

8The choice of the urgency function does not effect any theoretical results
or algorithms in this paper, but might effect the preference for transmission
probabilities. To characterize the desire for data refreshing in online adver-
tisement placement and online Web ranking [33], we employ Γt = t−0.1

that decreases more slowly when t becomes larger, since the depreciation
speed of data in these applications becomes lower with the passing of time.
To account for the time value of rewards, discounting arises naturally in many
applications of stochastic dynamic programming, such as ecology, economics,
and communications engineering [36]. As such, we select Γt = 0.95t−1 to
reflect the impact of discounting.
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TABLE I: Realizations of bt and its approximation bbd
t when πfurQ is used for N = 8, λ = 0.8, D = 20, σ1 = 0.95,

σ0 = σ2 = · · · = σN = 0, and their Bhattacharyya distance Bd.
bt(0) bt(1) bt(2) bt(3) bt(4) bt(5) bt(6) bt(7) bt(8) Bd

t = 1
o1 = 1

bt 0.000003 0.000082 0.001147 0.009175 0.045875 0.146801 0.293601 0.335544 0.167772
0Approx. 0.000003 0.000082 0.001147 0.009175 0.045875 0.146801 0.293601 0.335544 0.167772

t = 2
o2 = 0

bt 0.000029 0.000706 0.007288 0.041816 0.143945 0.297307 0.341145 0.167764 0
0Approx. 0.000029 0.000706 0.007288 0.041816 0.143945 0.297307 0.341145 0.167764 0

t = 3
o3 = 0

bt 0.000073 0.001486 0.012916 0.062357 0.180632 0.313947 0.303142 0.125446 0
0Approx. 0.000073 0.001486 0.012916 0.062357 0.180632 0.313947 0.303142 0.125446 0

t = 4
o4 = 0

bt 0.000180 0.003059 0.022273 0.090108 0.218722 0.318546 0.257738 0.089374 0
0Approx. 0.000180 0.003059 0.022273 0.090108 0.218722 0.318546 0.257738 0.089374 0

t = 5
o5 = 2

bt 0.000433 0.006133 0.037230 0.125553 0.254050 0.308434 0.208033 0.060135 0
0Approx. 0.000433 0.006133 0.037230 0.125553 0.254050 0.308434 0.208033 0.060135 0

t = 6
o6 = 0

bt 0 0.000254 0.007856 0.058187 0.194429 0.336873 0.296784 0.105617 0
0.001350Approx. 0.000083 0.001637 0.013902 0.065587 0.185655 0.315314 0.297514 0.120308 0

t = 7
o7 = 0

bt 0 0.000533 0.013728 0.084740 0.235966 0.340708 0.250141 0.074183 0
0.002052Approx. 0.000207 0.003423 0.024224 0.095238 0.224659 0.317971 0.250023 0.084255 0

t = 8
o8 = 2

bt 0 0.001100 0.023438 0.119758 0.276044 0.329929 0.200508 0.049223 0
0.003384Approx. 0.000511 0.006986 0.040925 0.133186 0.260066 0.304689 0.198316 0.055320 0

t = 9
o9 = 1

bt 0 0.000044 0.004952 0.055623 0.211188 0.358942 0.283817 0.085434 0
0.004467Approx. 0.000099 0.001888 0.015494 0.070624 0.193147 0.316938 0.288928 0.112883 0

t = 10
o10 = 0

bt 0.000019 0.003581 0.049883 0.208761 0.366654 0.287604 0.083498 0 0
0.003579Approx. 0.000832 0.011283 0.063773 0.192244 0.325981 0.294802 0.111086 0 0

t = 15
o15 = 1

bt 0.000017 0.008103 0.124040 0.386871 0.373773 0.107195 0 0 0
0.011738Approx. 0.001804 0.022897 0.116213 0.294923 0.374224 0.189939 0 0 0

t = 20
o20 = 0

bt 0.776553 0.212644 0.010803 0 0 0 0 0 0
0.002857Approx. 0.718406 0.258365 0.023229 0 0 0 0 0 0
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Fig. 2: The UDT as a function of the channel load Nλ/D for N = 50 under the collision channel with σ1 = 0.95.

we observe that πfurQ performs very close to πsimQ with
only 0.04% – 0.99% loss, which conforms that the belief
approximation in Section VI-B is reasonable. We note that,
as expected, such loss increases with D since more approxi-
mation errors would be introduced, but is always small since
the time value of successful transmissions would weaken
the negative impact of approximation errors for large D. In
addition, we observe that the gap between the UDT of π̂∗ and
πsimQ is minor when Nλ/D is small and gradually becomes
more noticeable as Nλ/D increases. This phenomenon is due
to the fact: when λ < 0.5, the variance of n1 becomes larger
as λ increases, so the impact of complete knowledge of nt

becomes more significant.

Figs. 2(d)–(f)9 compare the UDT performance of the six
schemes when N = 50 and Γt = 0.95t−1. We observe
that πsimQ enjoys 0.21% – 12.30% improvement over πmyo,
2.40% – 10.77% improvement over πsta, and 2.66% – 55.37%
improvement over πdah, and observe that πfurQ performs very
close to πsimQ with only 0.04% – 0.73% loss. The results
clearly verify again the benefits of utilizing the feedback
information in sequential decision making of πsimQ and πfurQ.

Fig. 3 compares the PLR of the six schemes under sporadic

9As
∑3

t=1 t
−0.1 and

∑3
t=1 0.95

t−1 take almost the same value,
Figs. 2(a)(d) for D = 3 look almost the same. Similar observations can
be found in Figs. 2(b)(e) for D = 5. On the contrary, as

∑10
t=1 t

−0.1 is
obviously larger than

∑10
t=1 0.95

t−1, the UDT in Fig. 2(c) is obviously larger
than that in Fig. 2(f) for D = 10.
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(c) D = 10.

Fig. 3: The PLR as a function of the channel load Nλ/D for N = 100 under the collision channel with σ1 = 0.95.
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(f) Γt = 0.95t−1, D = 10.

Fig. 4: The UDT as a function of the channel load Nλ/D for N = 50 under the SINR-based capture channel with ν = 1,
κ = 20.

traffic generated from N = 100 users, which is equivalent
to comparing the UDT with Γt = 1. We observe that πsimQ

enjoys 28.31% – 51.86% PLR reduction over πmyo, 25.15% –
49.54% reduction over πsta, and 29.78% – 71.61% reduction
over πdah. We also observe that πfurQ still performs close to
πsimQ in terms of PLR. The results indicate that both πsimQ

and πfurQ are suitable random access candidates in scenarios
that focus on the reliability target.

B. Performance: SINR-based Capture

Consider an SINR-based capture model, where σn can be
computed by σn = e−

ν
κ

(1+ν)n−1 , ∀n ∈ N \ {0}, and refer our
readers to [40] for more details on the model. Here, we set ν =
1, κ = 20. The UDT advantage of πsimQ is confirmed again in
Fig. 4, which shows the UDT as a function of the channel load
Nλ/D for N = 50 under the capture model. We observe that
πsimQ enjoys 0.20% – 7.11% improvement over πmyo, 1.19% –
8.45% improvement over πsta, 1.44% – 46.84% improvement

over πdah. It is interesting to note that the gap between the
UDT of π̂∗ and πsimQ is less notable than that in Fig. 2,
which can be attribute to the fact that increasing the reception
capability weakens the benefit of complete knowledge of nt.
The significant PLR advantage of πsimQ is confirmed under
the capture model in Fig. 5, which shows that πsimQ enjoys
19.29% – 65.01% PLR reduction over πmyo, 22.17% – 64.48%
reduction over πsta, and 27.49% – 84.45% reduction over πdah.

C. Robustness to Relaxed System Assumptions

When the packet generation probability λ is unavailable,
based on local packet arrival events, each user can locally
estimate the value of λ but at the cost of low convergence
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Fig. 5: The PLR as a function of the channel load Nλ/D for N = 100 under the SINR-based capture channel with ν = 1,
κ = 20.
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Fig. 6: The UDT under relaxed system assumptions for λ = 0.125, Γt = t−0.1, D = 5 under the collision channel with
σ1 = 0.95 and the SINR-based capture channel with ν = 1, κ = 20. N is fixed to 20 in (a)–(c) and is varying in (d).

speed (due to the sporadic traffic assumption)10. Then, each
active user uses the estimated value of λ to obtain the initial
belief in the POMDP formulation, and compute the policies.
Since different active users may have different estimated
values of λ and adopt different transmission probabilities at
the same slot, as shown in Fig. 6(a) for a single numerical
experiment, the system performance converges to a stable
value within a certain number of frames.

Under different packet generation probabilities λ1, . . . , λN ,
for the idealized environment, there is no impact on
the MDP formulation and the optimality of the my-
opic policy, but the UDT needs to be recalculated
as 1

D

∑
n∈N

∑
I∈P(N ),|I|=n

∏
i∈I λi

∏
j∈N\I(1−λj)R

π̂(n),
where P(N ) is the power set of N . For the real-
istic environment, such a heterogeneous scenario would
require us to set the initial belief as [

∏
n∈N (1 −

λn),
∑

n∈N λn

∏
n′∈N ,n′ ̸=n(1 − λn′), . . . ,

∏
n∈N λn], and

make the policy πfurQ no longer applicable as πfurQ requires
the initial belief to be a Binomial distribution. Assuming
λ1, λ2, . . . , λN are uniformly and randomly chosen from an
interval with the mean λ, Fig. 6(b) shows that πsimQ outper-
forms other policies for different interval lengths: 3.85% –
4.08% improvement over πmyo under the collision channel,
9.21% – 9.53% improvement over πsta under the collision

10This method is simple but does not utilize the information from the
transmission outcomes to accelerate the estimate process. Then, by viewing
the problem with unknown λ as a POMDP formulation with an unknown
parameter, we can also use reinforcement learning algorithms to learn the
value of λ by directly interacting with the environment, which, however, are
beyond the scope of this paper and will be considered as a direction of our
future study.

channel, 3.44% – 4.25% improvement over πmyo under the
SINR-based capture channel, and 6.63% – 6.90% over πsta

under the SINR-based capture channel.
Consider that the first frames of different users may have

time offsets taking arbitrary values uniformly and randomly
from {0, 1, . . . ,∆} with 0 ≤ ∆ ≤ D − 1. Obviously, the
theoretical work in this paper is inapplicable to such unsyn-
chronized periodic traffic11. Fig. 6(c) shows the robustness
of the proposed schemes for different values of ∆. We can
see that all the schemes enjoy higher UDTs as ∆ increases.
This is because a higher ∆ would enable the packets to
be generated at more scattered time slots, which indeed
leads to less urgent scenarios. Further, we can observe that
the performance advantage of the proposed schemes over
the optimal static scheme becomes less noticeable when ∆
increases. This phenomenon can be attributed to the fact that
the proposed schemes are designed based on the dynamic
optimality under frame-synchronized traffic, thus being less
robust to the introduction of time offsets.

Obviously, our POMDP formulation can be modified to
support dynamic-varying N if its probability distribution is
known, which makes Algorithm 1 still applicable. Assuming
N is uniformly and randomly chosen from all integers in
an interval with the mean 20, Fig. 6(d) indicates that πsimQ

outperforms other policies for different interval lengths: 3.73%
– 4.61% improvement over πmyo and 9.23% – 10.62% im-

11To handle with such unsynchronized traffic, a standard way is to develop
an optimal scheme based on the theory of decentralized MDP. However,
solving a decentralized MDP is in general NEXP-complete [41]. Hence,
an appropriate practical scheme needs to be further designed, which is our
ongoing work.
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provement over πsta under the collision channel, and 3.75%
– 4.39% improvement over πmyo and 6.67% – 8.12% over
πsta under the SINR-based capture channel. As the interval
length increases, we can see that all the schemes suffer lower
UDTs. This is because the contention scenario becomes more
unpredictable and varied.

VIII. CONCLUSIONS

We investigated the random access design in uplink IoT sys-
tems for urgency-constrained frame-synchronized traffic. Built
on the theories of MDP and POMDP, we generalized prior
studies on this issue to seek optimal policies by considering
a general ALOHA-like protocol, a general urgency function,
and a general SPR channel. For the idealized environment,
we proved the optimality of the myopic policy. For the
realistic environment, we showed the myopic policy is in
general not optimal, and proposed two practical policies that
utilize the special properties of our problem. Simulation results
showed that the proposed schemes outperform the state-of-the-
art schemes under a wide range of network configurations.
Our modeling approach can be easily extended to consider
a general MPR channel (via modifying the state transition
function, observation function, and reward function), a general
frame-synchronized traffic model (via modifying the initial
belief), and multi-slot packets (via incorporating the remaining
time of current transmission into the state).

Instantaneous feedback is a key assumption in our work,
which is reasonable when ACK/NACK transmission time is
negligible compared with the packet transmission time. In
our future work, we will relax this assumption to consider
deferred-feedback cases, which would lead to more compli-
cated modeling than that for the instantaneous-feedback case.

APPENDIX A
PROOF OF INEQUALITY (14)

First, we shall prove U∗
t (1) = σ1ΓD by induction on t from

t = D down to 1. When t = D, by Eq. (10), we have U∗
D(1) =

σ1ΓD. When t ∈ T \ {D}, we assume U∗
t+1(1) = σ1ΓD. By

Eqs. (1), (2), and (11), we have

U⋄
t (1, p) = rt(1, p) +

∑
n′∈N

βt(n
′, 1, p)U∗

t+1(n
′)

= Γtσ1p+ (1− σ1p)U
∗
t+1(1)

= (Γt − σ1ΓD)σ1p+ σ1ΓD. (31)

Taking the derivative of Eq. (31) with respect to p derives that
d

dpU
⋄
t (1, p) = (Γt − σ1ΓD)σ1. As Γt < σ1Γt+1, we obtain

Γt < σD−t
1 ΓD ≤ σ1ΓD for each t ∈ T \ {D} and, thus,

U⋄
t (1, p) attains its maximum when p = 0, i.e., U∗

t (1) =
σ1ΓD. So, we have U∗

t (1) = σ1ΓD for each t ∈ T .
Next, we shall prove Umyo

t (1) < σ1ΓD for each t ∈ T \{D}.
For each t ∈ T , by Eqs. (2) and (7), we have π̂myo

t (1) = 1.
When t = D, by Eq. (8), we have Umyo

D (1) = σ1ΓD. When
t ∈ T \ {D}, by Eqs. (1), (2), and (8), we have

Umyo
t (1) = rt

(
1, π̂myo

t (1)
)
+
∑
n′∈N

βt

(
n′, 1, π̂myo

t (1)
)
Umyo
t+1(n

′)

= Γtσ1 + (1− σ1)U
myo
t+1(1). (32)

Further, by Γt < σD−t
1 ΓD, recursively using Eq. (32) yields

Umyo
t (1) = σ1Γt + σ1(1− σ1)Γt+1 + · · ·

+ σ1(1− σ1)
D−t−1ΓD−1 + (1− σ1)

D−tUmyo
D (1)

= σ1Γt + σ1(1− σ1)Γt+1 + · · ·
+ σ1(1− σ1)

D−t−1ΓD−1 + σ1(1− σ1)
D−tΓD

< σD−t+1
1 ΓD + σD−t

1 (1− σ1)ΓD + · · ·
+ σ2

1(1− σ1)
D−t−1ΓD + σ1(1− σ1)

D−tΓD

= σ1

(
σD−t
1 + σD−t−1

1 (1− σ1) + · · ·
+ σ1(1− σ1)

D−t−1 + (1− σ1)
D−t

)
ΓD

≤ σ1

(
σ1 + (1− σ1)

)D−t
ΓD = σ1ΓD.

APPENDIX B
PROOF OF INEQUALITY (15)

In this proof, the MDP definitions and notation are given
based on the threshold-based MPR channel assumption. So,
we have

βt(n
′, n, p)

=


(

n
n−n′

)
pn−n′

(1− p)n
′
, if 0 < n− n′ ≤ γ,

1−
∑min(n,γ)

k=1

(
n
k

)
pk(1− p)n−k, if n− n′ = 0,

0, otherwise,
(33)

for each t ∈ T \ {D}, each n, n′ ∈ N , and each p ∈ [0, 1],
and

rt(n, p) =

min(n,γ)∑
k=1

k

(
n

k

)
pk(1− p)n−k, (34)

for each t ∈ T , each n ∈ N , and each p ∈ [0, 1]. We also
have

U∗
t (n) = Umyo

t (n) = n, ∀t ∈ T , ∀n ∈ {0, 1, . . . , γ}, (35)
U∗
D(n) = Umyo

D (n), ∀n ∈ N . (36)

Then, given arbitrary D ≥ 1 and 2 ≤ γ < N , for each
t ∈ T , by Eq. (34), we have

rt(γ + 1, p) = (γ + 1)

γ−1∑
k′=0

(
γ

k′

)
pk

′+1(1− p)γ−k′

= (γ + 1)(p− pγ+1).

Since rt(γ + 1, p) > rt(γ + 1, 0) = rt(γ + 1, 1) = 0 if p ∈
(0, 1), we know that the continuous function rt(γ + 1, p) has
a local maximum at π̂myo

t (γ +1) lying in (0, 1). As d
dprt(γ +

1, p) = (γ+1)
(
1−(γ+1)pγ

)
always exists at p ∈ (0, 1), by the

Fermat’s Theorem, π̂myo
t (γ+1) is a solution of d

dprt(γ+1, p) =

0, i.e., π̂myo
t (γ + 1) = (γ + 1)−

1
γ .

We further investigate the monotonicity of the sequence
{π̂myo

t (γ + 1)}N−1
γ=2 . Let f(x) , (x + 1)−

1
x , x ∈ [2,+∞)

such that f(γ) = π̂myo
t (γ + 1) for all 2 ≤ γ < N .

Taking the derivative of f(x) with respect to x derives
that d

dxf(x) = x−2(x + 1)−
x+1
x ((x + 1) ln(x + 1) − x).

Let g(x) , (x + 1) ln(x + 1) − x, x ∈ [2,+∞). Since
d

dxg(x) = ln(x + 1) > 0, the function g(x) is strictly
increasing on [2,+∞). Thus, we obtain that g(x) ≥ g(2) =
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3 ln 3 − 2 > 0 and d
dxf(x) = x−2(x + 1)−

x+1
x g(x) > 0.

As the function f(x) is strictly increasing on [2,+∞), the
sequence

{
π̂myo
t (γ + 1)

}N−1

γ=2
is strictly increasing. So, for all

2 ≤ γ < N , we have

π̂myo
t (γ + 1) ≥ π̂myo

t (3) >
1

2
. (37)

Next, given arbitrary D ≥ 2 and 2 ≤ γ < N , when t ∈
T \ {D}, by Eqs. (11), (33), (34), and (35), we have

U⋄
t (γ + 1, p) = rt(γ + 1, p) +

∑
n′∈N

βt(n
′, γ + 1, p)U∗

t+1(n
′)

=

γ∑
k=1

k

(
γ + 1

k

)
pk(1− p)γ+1−k

+

γ∑
k=1

(
γ + 1

k

)
pk(1− p)γ+1−kU∗

t+1(γ + 1− k)

+

(
1−

γ∑
k=1

(
γ + 1

k

)
pk(1− p)γ+1−k

)
U∗
t+1(γ + 1)

= (γ + 1)
(
1− pγ+1 − (1− p)γ+1

)
+
(
pγ+1 + (1− p)γ+1

)
U∗
t+1(γ + 1)

=
(
γ + 1− U∗

t+1(γ + 1)
)

×
(
1− pγ+1 − (1− p)γ+1

)
+ U∗

t+1(γ + 1). (38)

Taking the derivative of U⋄
t (γ + 1, p) with p derives that

d
dp

U⋄
t (γ + 1, p)

=
(
γ + 1− U∗

t+1(γ + 1)
)(
1− pγ+1 − (1− p)γ+1

)′
= (γ + 1)

(
γ + 1− U∗

t+1(γ + 1)
)(
(1− p)γ − pγ

)
.

Let f(p) , (1 − p)γ − pγ , p ∈ [0, 1]. The derivative of f(p)
with respect to p is d

dpf(p) = −γ((1−p)γ−1+pγ−1) < 0 for
p ∈ [0, 1]. As f(p) is strictly decreasing on [0, 1], p = 1

2 is the
only solution of f(p) = 0. By the MDP definitions, we know
γ+1−U∗

t (γ+1) > 0 for each t ∈ T . Since d
dpU

⋄
t (γ+1, p) =

(γ + 1)
(
γ + 1 − U∗

t+1(γ + 1)
)
f(p), U⋄

t (γ + 1, p) is strictly
increasing on p ∈ [0, 1

2 ) and strictly decreasing on p ∈ ( 12 , 1].
So, we have π̂∗

t (γ + 1) = 1
2 for each t ∈ T \ {D}.

For each t ∈ T \ {D}, by Inequality (37), we have π̂∗
t (γ +

1) < π̂myo
t (γ + 1) and Umyo

t (γ + 1) < U∗
t (γ + 1). Hence, we

complete the proof for Inequality (15).

APPENDIX C
PROOF OF INEQUALITY (23)

Let f(b, p) ,
∑

n∈N b(n)rt(n, p). Then f(b, p) = (σ2 −
2)b(2)p2+(b(1)+2b(2))p and d

dpf(b, p) = (2σ2−4)b(2)p+

b(1) + 2b(2). By the assumption 0 < b(2) ≤ 1
2−2σ2

b(1),
f(b, p) attains its maximum only when p = 1, indicating
πmyo
D−1(b) = 1. By Eq. (20), we have

V myo
D−1(b) = b(1) + σ2b(2)

+ χD−1(0,b, 1)V
myo
D

(
θD−1(b, 1, 0)

)
+ χD−1(1,b, 1)V

myo
D

(
θD−1(b, 1, 1)

)
+ χD−1(2,b, 1)V

myo
D

(
θD−1(b, 1, 2)

)
,

where

χD−1(0,b, 1) = b(0),

θD−1(b, 1, 0) = [1, 0, 0],

χD−1(1,b, 1) = b(1) + σ2b(2),

θD−1(b, 1, 1) =
1

χD−1(1,b, 1)
[b(1), σ2b(2), 0],

χD−1(2,b, 1) = (1− σ2)b(2),

θD−1(b, 1, 2) = [0, 0, 1],

V myo
D

(
θD−1(b, 1, 0)

)
= 0,

V myo
D

(
θD−1(b, 1, 1)

)
=

σ2b(2)

χD−1(1,b, 1)
,

V myo
D

(
θD−1(b, 1, 2)

)
=

1

2− σ2
.

So, we have V myo
D−1(b) = b(1) +

−2σ2
2+3σ2+1
2−σ2

b(2).
For the ease of notation, let ρ = 1

2−σ2
. By Eqs. (21)

and (22), we have

V ⋄
D−1(b, ρ) = b(1)ρ+ b(2)

(
2ρ(1− ρ) + σ2ρ

2
)

+ χD−1(0,b, ρ)V
myo
D

(
θD−1(b, ρ, 0)

)
+ χD−1(1,b, ρ)V

myo
D

(
θD−1(b, ρ, 1)

)
+ χD−1(2,b, ρ)V

myo
D

(
θD−1(b, ρ, 2)

)
,

where

χD−1(0,b, ρ) = b(0) + b(1)(1− ρ) + b(2)(1− ρ)2,

θD−1(b, ρ, 0) =
1

χD−1(0,b, ρ)

×
[
b(0), b(1)(1− ρ), b(2)(1− ρ)2

]
,

χD−1(1,b, ρ) = b(1)ρ+ b(2)
(
2ρ(1− ρ) + σ2ρ

2
)
,

θD−1(b, ρ, 1) =
1

χD−1(1,b, ρ)

×
[
b(1)ρ, b(2)

(
2ρ(1− ρ) + σ2ρ

2
)
, 0
]
,

χD−1(2,b, ρ) = b(2)(1− σ2)ρ
2,

θD−1(b, ρ, 2) = [0, 0, 1],

V myo
D

(
θD−1(b, ρ, 0)

)
=

b(1)(1− ρ) + σ2b(2)(1− ρ)2

χD−1(0,b, ρ)
,

V myo
D

(
θD−1(b, ρ, 1)

)
=

2ρ(1− ρ) + σ2ρ
2

χD−1(1,b, ρ)
,

V myo
D

(
θD−1(b, ρ, 2)

)
= ρ.

So, we have

V ⋄
D−1

(
b,

1

2− σ2

)
= b(1) +

−σ4
2 + 4σ3

2 − 3σ2
2 − 7σ2 + 9

(2− σ2)3
b(2).

Comparing V myo
D−1(b) and V ⋄

D−1

(
b, 1

2−σ2

)
, we have

V ⋄
D−1

(
b,

1

2− σ2

)
− V myo

D−1(b)

=
(1− σ2)

2(σ2
2 − 5σ2 + 5)

(2− σ2)3
b(2) > 0,

for each σ2 ∈ [0, 1).
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