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Abstract—Packet scheduling for wireless downlink to multiple
nodes with deadline and retransmission constraints plays an
important role in supporting real-time applications. In this paper,
under independent packet arrival processes for different nodes,
we formulate this downlink problem as an Markov Decision
Process (MDP) by considering all the packets in the queues for
all the nodes and obtain a deterministic stationary ε-optimal
scheduling policy. To reduce the exponential complexity due to
possibly multiple packets in each queue, we modify this MDP
by only considering the head-of-line (HoL) packets, and obtain
a heuristic scheduling policy. Simulation results show that the
proposed heuristic policy achieves near-optimal performance and
outperforms three baselines.

Index Terms—Deadline-constrained downlink, throughput,
scheduling, retransmissions, Markov Decision Process

I. INTRODUCTION

Deadline-constrained wireless communication systems have
been becoming widespread nowadays. Typical examples in-
clude real-time streaming and video conferencing over cellular
or WiFi networks [1], [2], 5G-enabled tactile Internet [3], wire-
less networked control systems [4]–[6], and wireless cyber-
physical systems [7]–[9]. In such applications, each packet
has a strict deadline, that is, a packet will be removed from
the system if it is not successfully transmitted before the
deadline [2], [10].

Deadline-constrained wireless downlink has been an active
research area since the seminal work [11] by Hou, Borkar
and Kumar, For the frame-synchronized traffic, they proposed
an idle-time-based framework to characterize timely capacity
region and further designed a throughput-optimal scheduling
policy, called the largest-deficit-first (LDF) policy. After that,
a serials of extensive works [12]–[15] have been conducted
for such traffic. However, it requires that the traffic for each
node only possibly has a new packet arrival at the beginning
of every global frame and the strict deadline is equal to the
frame length, which only captures limited practical scenarios.
To remove this limit, Deng et. al in [2] proposed an Markov
Decision Process (MDP)-based framework to consider general
traffic patterns. They characterized the timely capacity region
by a finite number of linear constraints and also proposed an
MDP-based throughput-optimal scheduling policy.

However, the existing studies did not impose any restriction
on retransmissions, but assumed that a packet can be trans-
mitted as soon as it has not been transmitted successfully
and its deadline has not been expired. This setting does

not comply with the current standards for wireless network-
s. For example, the hard limit on retransmission times is
termed maxRetxThreshold [16], [17] in 4G LTE and
5G NR standards, and the hard limits for short packets
and long packets are termed dot11ShortRetryLimit
and dot11LongRetryLimit [18], respectively, in WiFi
standards. In addition, this hard limit is usually set to be 1
for URLLC applications [19].

In this paper, we focus on wireless downlink to multiple
nodes with deadline and retransmission constraints, where the
packet arrival processes for different nodes are independent.
We aim to design a scheduling policy that maximizes the
network throughput. Our contributions are as follows.
• First, following [2], we formulate our problem as an MDP

by modeling all the packets in all the queues into the state,
and obtain a deterministic stationary ε-optimal scheduling
policy based on this MDP. To our best knowledge, we are
the first to consider a retransmission constraint.

• Second, it is well-known that the MDP approach suf-
fers from the curse of dimensionality. The exponential
complexity comes from two parts in our problem: (i) the
number of nodes, and (ii) the number of packets in each
queue. In this work, we partially address the curse of
dimensionality by reducing the exponential complexity
due to part (ii). We formulate a modified MDP that only
models the head-of-line (HoL) packets into the state. The
intuition behind is that the information of HoL packets
has a dominant impact on the system performance, and
it is reasonable to take into account the impact of non-
HoL packets merely relying on the packet arriving rate,
but not relying on the actual arrival events. Based on this
modified MDP, we propose a heuristic scheduling policy.

• Finally, we conduce extensive simulations to demonstrate
that the proposed heuristic policy achieves near-optimal
performance and outperforms three baselines.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a fully-connected wireless
downlink network where a BS wants to transmit the packets
from its queue i to node i for i = 1, 2, . . . ,K. The channel
time is divided into time slots of equal duration. At the
beginning of each slot and at each queue i, a single-slot packet
arrives with probability 0 < λi ≤ 1. Each packet has a
strict delivery deadline D ≥ 1 (slots) and is allowed to be



Fig. 1. A wireless downlink scenario for two nodes at slot t.

transmitted for at most 1 ≤ N ≤ D times. The packet arrival
processes are assumed to be independent across all the queues.
At the beginning of each slot, the BS determines which queue’s
HoL packet or no packet will be transmitted, according to a
predefined scheduling policy.

We assume that the channel state for each node keeps
unchanged during a slot, and evolves over slots independently
of each other. We model it as a time homogeneous finite-state
Markov chain (FSMC) with only two states {0, 1}: the good
state 1 and the bad state 0. Let cit represent the channel state
for node i at slot t. The transition probability from cit = 0
to cit+1 = 1 is αi > 0 and the transition probability from
cit = 1 to cit+1 = 1 is βi > 0. We assume that cit is known
to the BS at the beginning of slot t for all node i. We further
denote by pcit the probability of successful transmission if a
packet is sent to node i at slot t. Obviously, 0 ≤ p0 < p1 ≤ 1.
When a packet is sent at a slot, the BS is aware of whether
this packet is transmitted successfully at the end of this slot,
through an instantaneous and error-free feedback sent from the
corresponding node.

With the above assumptions, a packet will be removed
from its associated queue when either of the following events
occurs: (i) the packet has been successfully transmitted, (ii) the
packet has been transmitted for N times, and (iii) the packet
has stayed at the queue for D slots. Under this consideration,
our goal is to find a scheduling policy for BS to maximize the
network throughput, defined as the average number of packets
successfully transmitted per slot.

III. MDP FORMULATION AND OPTIMAL SOLUTION

In this section, we cast our wireless downlink problem as
an MDP, propose an optimization formulation based on this
MDP, and apply the value iteration algorithm to solve this
formulation.

A. MDP Formulation

We define a finite-dimension infinite-horizon average-
reward MDP, denoted by M, by describing the following
definitions of state, action, state transition probabilities, reward
and average reward.

1) Definition of the State: We define the network state as

St , (c1t , L
1
t , n

1
t , c

2
t , L

2
t , n

2
t , . . . , c

K
t , L

K
t , n

K
t ).

where cit ∈ {0, 1} is the channel state for node i at
slot t, nit ∈ {1, 2, . . . , N} is the remaining allowable

transmission times of the HoL packet in queue i at slot
t, and Lit is the collection of the remaining time before
expiration (called lead time) of all the packets in queue
i at slot t. We adopt the convention that nit = N when
queue i has no packet at slot t. Here, as each queue
has as most D packets with the lead time not larger
than D, Lit can be represented by a zero-one string [2],
Lit , bi1b

i
2...b

i
D where bil = 1 if and only if there exists

a packet in queue i with lead time l. For example, when
D = 4 and there are only two packets in queue i with
the lead time 1, 3 at slot t, we have Lit = 1010. Thus,
by enumerating all possible St, we can obtain the state
space S for M with |S| = (2N(2D − 1) + 2)K .

2) Definition of the Action: The action space of the BS is
defined as A , {0, 1, . . . ,K}. The action at slot t,
denoted by At, requires the HoL packet in queue a to
be transmitted at slot t if At = a ∈ A\{0} and requires
no packet to be transmitted at slot t if At = 0.

3) Definition of the State Transition Probabilities: We use
Pr(St+1 = s′|St = s,At = a) to represent the transition
probability from the state St = s to St+1 = s′ if
the action At = a is taken at slot t. Its calculation
depends on (i) the FSMCs for the channel states (ii)
the packet arrival events at the end of slot t and (iii)
the packet removal events at the end of slot t due
to successful transmission under some channel state,
deadline expiration or achieving the maximal allowable
transmission times. As these events are independent of
the slot index t, Pr(St+1 = s′|St = s,At = a) is time-
homogeneous for every case, and can be simply written
as Pr(s′|s, a). Thus, by examining the impact of these
events for each s, s′ ∈ S and each a ∈ A, we can obtain
all Pr(s′|s, a)s for M.
For example, considering a two-node downlink scenario
with D = 4, N = 2, assume that

s = (1, 1101, 2, 0, 0011, 1).

If the BS transmits the HoL packet of queue 1 at the
sate s, then we have

Pr
(
(1, 1010, 2, 1, 0111, 1)|s, 1

)
= p1(1− λ1)β1λ2α2.

4) Definition of the Reward: The reward that is gained
when action a is taken at state s, denoted by r(s, a),
is defined as the probability that a packet is successfully
transmitted under state s and action a, i.e.,

r(s, a) ,

{
0, if a = 0 or La = 00 · · · 0,
pca , otherwise,

where s = (c1, L1, n1, . . . , cK , LK , nK).
5) Definition of the Average Reward: The long-term aver-

age reward, denoted by r, is defined as:

r , lim inf
T→∞

1

T

T∑
t=1

E[r(St, At)]. (1)



From the formulation of M, we see that the network
throughput is exactly to the average reward r defined in
(1). Hence, we aim to obtain the optimal scheduling policy
that maximizes (1). Then, the optimization problem can be
expressed as follows:

argmax
χ∈Π

lim inf
T→∞

1

T

T∑
t=1

Eχ[r(St, At)] (2)

where Π denotes the set of all possible policies for M.

B. Optimal Solution

It is easy to check that M consists of a single recurrent class
plus a possibly empty set of transient states for every determin-
istic stationary policy, and thus M is unichain. Furthermore,
there exists a state s ∈ S, for any deterministic Markov policy,
it is possible to go from every s′ ∈ S to s with positive
probability. With these two properties, by [20, Theorem 8.5.3],
we can use the following value iteration algorithm to obtain
a deterministic stationary ε-optimal solution to (2) for an
arbitrarily small positive number ε, denoted by χε.

Algorithm 1 The Value Iteration Algorithm to find χε

1: Initialization: Set v(0)(s) = 0 for each s ∈ S, specify
ε > 0 and set k = 0.

2: Evaluation: For each s ∈ S, compute v(k+1)(s) by

v(k+1)(s) = maxa∈A

[
r(s, a) +

∑
s′∈S

Pr(s′|s, a)v(k)(s′)
]
.

3: Stopping Rule:
If

max
s∈S

(
v(k+1)(s)−v(k)(s)

)
−min
s∈S

(
v(k+1)(s)−v(k)(s)

)
< ε,

obtain the decision rule:

dec(s) ∈ argmaxa∈A

[
r(s, a) +

∑
s′∈S

Pr(s′|s, a)v(k)(s′)
]
,

and obtain the corresponding policy as χε.
Otherwise, increase k by one and return to step 2.

When K = 2, α1 = α2 = 0.7, β1 = β2 = 0.7, p0 = 0.3,
p1 = 0.6, four numerical experiments of applying Algorithm
1 to find χ10−5

are illustrated in Fig. 1. It can be seen that
20, 23, 28 and 30 iterations are needed, respectively.

IV. MODIFIED MDP FORMULATION AND HEURISTIC
DESIGN

Section III has designed the optimal scheduling policy χ∗

based the MDP formulation M. However, it involves a state
space S with |S| = (2N(2D−1)+2)K , and thus suffers from
high complexity, which is undesirable in practice. To overcome
this weakness, we modify M to M′ by only considering
the lead time of the HoL packet in each queue to define
the network state, and then propose a heuristic design for
scheduling policy based on M′.
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Fig. 2. Four iteration procedures for the case of two nodes.

A. Modified MDP Formulation

We define M′ by describing the following definitions of
state, action, state transition probabilities, reward and average
reward.

1) Definition of the State: We define the network state as
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where cit ∈ {0, 1} and nit ∈ {1, 2, . . . , N} have the same
physical meanings as in M, and lit ∈ {0, 1, 2, . . . , D}.
Here lit = 0 means no packet in queue i at slot t,
and lit ∈ {1, 2, . . . , D} is the lead time of the HoL
packet in queue i at slot t. We adopt the convention
that nit = N when lit = 0. Thus, by enumerating
all possible S′t, we can obtain the state space S ′ for
M′ with |S ′| = (2ND + 2)K , which has a significant
reduction compared with |S| = (2N(2D − 1) + 2)K .

2) Definition of the Action: The definitions of action space
and action are the same as in M.

3) Definition of the State Transition Probabilities: We use
Pr(S′t+1 = s′|S′t = s,At = a) to represent the transition
probability from the state S′t = s to S′t+1 = s′ if the
action At = a is taken at slot t. As the sate S′t only
considers the lead time of the HoL packet in each queue,
we need to evaluate the impact of lead times of all non-
HoL packets merely relying on the packet arriving rate,
but not relying on the actual packet arrival events as in
M. This idea complicates the calculation of transition
probabilities and introduces additional randomness for
modeling the system evolution, but is beneficial to
reduce the state space. We checked that Pr(S′t+1 =
s′|S′t = s,At = a) is always time-homogeneous, too,
and can be simply written as Pr′(s′|s, a). When action a
is taken, as the state transition for an arbitrary queue will
not be influenced by that of other queues, Pr′(s′|s, a) can
be decomposed as

Pr′(s′|s, a) = Pr(ci
′|ci)

K∏
i=1

Pr′((li
′
, ni
′
)|(li, ni), a).



We further consider the following five cases.
Case 1: When li = 0, a packet will arrive at the empty
queue i with probability λi, so we have

Pr′((0, N)|(0, N), a) = 1− λi, ∀a ∈ A,
Pr′((D,N)|(0, N), a) = λi, ∀a ∈ A.

Case 2: When li = 1, the HoL packet in queue i will
be removed no matter whether it is transmitted at the
current slot, so we have

Pr′((0, N)|(1, ni), a) = (1− λi)D, ∀a ∈ A,

Pr′((li
′
, N)|(1, ni), a) = (1− λi)l

i′−1λi, for li
′ ≥ 1

∀a ∈ A.

Here (1−λi)D represents the probability that no packet
arrived in queue i since the arrival of the HoL packet and
(1 − λi)l

i′−1λi represents the probability that a packet
arrived li′ slots later than the arrival of the HoL packet.
Case 3: When 1 < li ≤ D, ni = 1, a = i, the HoL
packet in queue i will be removed no matter whether
the transmission is successful, so we have

Pr′((0, N)|(li, 1), i) = (1− λi)D−l
i+1,

Pr′((li
′
, N)|(li, 1), i) = (1− λi)l

i′−liλi, for li
′ ≥ li.

Here (1 − λi)D−l
i+1 represents the probability that no

packet arrived in queue i during D−li+1 slots since the
arrival of the HoL packet, and (1−λi)l

i′−liλi represents
the probability that a packet arrived li′−li+1 slots later
than the arrival of the HoL packet.
Case 4: When 1 < li ≤ D, 1 < ni ≤ N, a = i, the HoL
packet in queue i will be removed if it is successfully
transmitted, so we have

Pr′((0, N)|(li, ni), i) = pci(1− λi)D−l
i+1,

Pr′((li
′
, N)|(li, ni), i) = pci(1− λi)l

i′−liλi

for li
′ ≥ li,

Pr′((li − 1, ni − 1)|(li, ni), i) = 1− pci .

Case 5: When 1 < li ≤ D, 1 ≤ ni ≤ N , a ∈ A \ {i},
the HoL packet will continue to stay at queue i, so we
have

Pr′((li − 1, ni)|(li, ni), a ∈ A \ {i}) = 1.

4) Definition of the Reward: The reward that is gained
when action a is taken at state s, denoted by r′(s, a), is
defined as the probability that a packet is successfully
transmitted under state s and action a, i.e.,

r′(s, a) ,

{
0, if a = 0 or la = 0,

pca , otherwise,

where s = (c1, l1, r1, . . . , cK , lK , rK).

5) Definition of the Average Reward: The long-term aver-
age reward, denoted by r′, is defined as:

r′ , lim inf
T→∞

1

T

T∑
t=1

E[r′(S′t, At)]. (3)

From the formulation of M′, we see that r′ defined in (3)
provides an evaluation for the network throughput. We aim to
obtain the optimal policy that maximizes (3), i.e.,

arg max
χ∈Π′

lim inf
T→∞

1

T

T∑
t=1

Eχ[r′(S′t, At)] (4)

where Π′ denotes the set of all possible policies for M′.

B. Heuristic Policy

With the similar argument in Section III.B, by [20, Theorem
8.5.3], we can apply the value iteration algorithm to obtain
a deterministic stationary ε-optimal solution to (4) for an
arbitrarily small positive number ε, denoted by χεheu. The
details are omitted here, as we only need to replace S by
S ′ and replace Pr(s′|s, a) by Pr′(s′|s, a) in Algorithm 1.
Compared with χε, χεheu is obtained based on a reduced state
space and thus can be viewed as a heuristic solution to (2).

V. PERFORMANCE EVALUATION

In this section, we use simulation to compare the network
throughput of ε-optimal policy, heuristic policy and three
baselines, which are described as follows.
• Random Policy: All HoL packets have the equal oppor-

tunity to be transmitted.
• Smallest-HoL-Lead-Time-First (SHLF) Policy: The HoL

packet with the smallest lead time will be transmitted.
• Shortest-Queue-First (SQF) Policy: The HoL packet in

the shortest queue will be transmitted.
Each simulation result is obtained from 10 simulation runs
with 107 slots in each run. The channel transition probabilities
are set to be α1 = α2 = β1 = β2 = 0.7, the probabilities of
successful transmission are set to be p0 = 0.3, p1 = 0.6, and
the arriving rates are set to be λ1 = λ2 = λ.

Fig. 3 shows that the network throughput of the heuristic
policy χ10−5

heu for two nodes is almost equal to the that of 10−5-
optimal policy χ10−5

in all the cases. The throughput becomes
higher as the deadline D, the arriving rate λ or the maximal
allowable transmission times N increases. In particular, we
see that the throughput increase more slowly with λ when
λ is large, as more packets are removed due to deadline
expirations and thus cannot contribute to the throughput. The
similar phenomenon occurs for large N , especially when λ is
large or D is small. This is because that almost all packets are
removed when they have been transmitted for far less than N
times, due to deadline expirations or successful transmissions.

Fig. 4 shows that the heuristic policy χ10−5

heu for three
nodes significantly outperforms three baselines in all the cases.
The gap becomes larger as λ increases. This is because that
heavier traffic would lead to more urgent scheduling scenarios
where the packet information is more useful to increase the
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Fig. 3. A comparison for 10−5-optimal policy and heuristic policy when
K = 2.
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Fig. 4. A comparison for the proposed heuristic policy and three baseline
policies when K = 3 and D = 5.

throughput. In addition, we see that the SHLF policy performs
slightly better than the SQF policy in all the cases, which
implies that the lead time of HoL packets is slightly more
important than the queue length for scheduling. As expected,
the random policy performs very poorly, as it makes the
scheduling decisions without utilizing system information.

VI. CONCLUSIONS

In this paper, under independent packet arrival processes for
different nodes, we have investigated the scheduling problem
for wireless downlink with deadline and retransmission con-
straints. We proposed an MDP-based framework to formulate
such a problem, and obtained a deterministic stationary ε-
optimal scheduling policy. Furthermore, we proposed another
MDP formulation with reduced state space to obtain a heuristic
policy with near-optimal performance. Our ongoing work is
to further reduce the exponential complexity caused by the
number of nodes and to consider partial observation of channel
states for modeling.
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