Towards URLLC with Open-Source 5G Software

Aoyu Gong[†], Arman Maghsoudnia[†], Raphael Cannatà[†], Eduard Vlad[¶], Néstor Lomba Lomba[†], Dan Mihai Dumitriu[‡], Haitham Hassanieh[†]
EPFL[†], RWTH Aachen[¶], Pavonis LLC[‡]

Motivation

Next-Generation Cellular Networks

NextG applications require low-latency communications

Motivation

Ultra-Reliable Low-Latency Communication

- 1 Where does latency come from in real 5G systems?
 - 2 How do these latency sources interact?
 - (3) What bottlenecks do theorical and simulation work overlook?
 - 4 How can open-source 5G testbeds help reach low latency?

5G Network

5G Stack

- Layer 2 : Medium Access Control (MAC)
- Layer 1 : Physical Layer (PHY) & Radio Head

Open-Source 5G Software

Mobile Core:

Radio Access Network:

Full-stack programmability + Ability to experiment on real-world setup

Open-Source 5G Software

Mobile Core:

Radio Access Network:

Full-stack programmability + Ability to experiment on real-world setup

5G Time Slots

More flexible than 4G → **Numerology** → Slot duration

5G Slots

More flexible than 4G → **Numerology** → Slot duration

Slot-Based System

Slot Offsets Across Layers

Higher layers always process and forward downlink data in advance

Scheduling Offset (S slot)

Default : S = 1 slot

Provide a safety margin

Wait 0.5 ms

Give extra time in case the execution is occasionally slower than expected

Radio Offset (R slot)

Sufficiently large to support different hardware

Wait 1.5 ms

Default : R = 3 slots

Give extra time for wired transmission (e.g., USB) and radio processing

Implementation-Level Latency

■ Slot offsets \rightarrow Significant latency (S + R = 4 slots = 2 ms)

Implementation-Level Latency

Specification-Level Latency

Grant-based access

Send Scheduling Request (SR)

Specification-Level Latency

Grant-based access

Time Division Duplex (TDD)

Send Scheduling Request (SR)

Wait during downlink slots

Latency Breakdown (Downlink Scheduling)

Numerology 1 / 1 slot = 0.5 ms

Steps
$$\textcircled{1} \rightarrow \textcircled{3}$$

DL > 5 slots = 2.5 ms

Latency Breakdown (Uplink Scheduling)

Latency Lower Bounds

Improvement 1 (I1): Reduce Radio Offset (R)

Minimize radio offset to the lowest safe value

Improvement 2 (I2): Reduce Scheduling Offset (S)

Remove scheduling offset by letting MAC trigger PHY directly

Improvement 3 (I3): Scheduling-Request-Free Access

Send grants before every uplink slot

Grant-based access

SR-free access

Latency Breakdown (I1 + I2 + I3)

Latency Lower Bounds (I1 + I2 + I3)

Comparing Latency Distributions

Downlink latency

Uplink latency

Comparing Average Latency

DL: 3.6 ms \rightarrow 2.2 ms

UL: 7.4 ms → 3.3 ms

Evaluating Commercial 5G Modules

Consistently deliver low-latency performance across diverse 5G modules

Evaluating Commercial 5G Phones

Demonstrate robustness and scalability in a realistic multi-UE setup

Explore More!

Visit our GitHub Repo

srsRAN_Project_Low_Latency

