

Optimal Channel Access Schemes for Wireless LAN under Asynchronous Multiple-Packet Reception (MPR)

Aoyu Gong

School of Electronic and Optical Engineering

Nanjing University of Science and Technology

Research Background

	<i>p</i> -Persistent CSMA		A user begins a packet transmission with a common probability p when it has sensed channel idle, and continues sensing when it has sensed channel busy					
	Multiple-Pac Reception	ket Suce at the	Multiple-packet reception (MPR) techniques enable successful receptions of time-overlapping packets at the physical layer.					
A pa hea	User Idle / sens probated arrives the ad of the queue	Continue ing with bility 1 - p Continue sensing	Idle / Begin a packet transmission with probability <i>p</i>	Time Axis	User 1 User 2 · · · · · · ·	ceiver		
	Figure 1.	<i>p</i> -persistent C	CSMA		Figure 2. MPR techniques			

Research Background

Traditional <i>p</i> - single-pac	persistent CSMA under ket reception (SPR)	Traditional <i>p</i> -persistent CSMA under multiple-packet reception (MPR)		
Limitation 1	Early studies on <i>p</i> -persis which did not consider t	tent CSMA assumed the SPR model, ne advance of MPR techniques		
Limitation 2	Further studies on <i>p</i> -personder the synchronous mathematical synchrono	istent CSMA assumed the MPR model node, which led to bandwidth waste		
Limitation 3	Although some early studo not provide a general access probabilities are	dies have improved the protocol, they analytical model, and the setting of far from the optimum		

Carrier Sensing	We assume that all users can perform carrier sensing to detect if the number of ongoing transmissions is 0,, γ -1 or $\geq \gamma$, and the time required to do so is negligible
Channel Assumption	We consider that wireless fading effect is negligible , and channel coding is not used to protect the packets.
γ-MPR Capability	We assume that the receiver has the γ -MPR capability, i.e., can recover all <i>n</i> signals simultaneously transmitted in a slot if $1 \le n \le \gamma$, and recover none of them otherwise.
Packet Length	We consider that the packet lengths correspond to integer numbers of slots , and follow the geometric distribution with average value $\Lambda > 1$

Main Contributions

Remark: The aforementioned system model with $\gamma = 1$ is exactly the model for *p*-persistent CSMA under SPR.

Contrib. 1 Protocol Design The generalized *p*-persistent CSMA for the case of N = 3 and $\gamma = 2$.

- 1. At the beginning of slot 1, user 2 and user 3 detect the number of ongoing transmission is 0; thus they begin transmissions with probability p_0 .
- 2. At the beginning of slot 8, user 1 detects the number of ongoing transmission is 1; thus it begins a transmission with probability p_1 .

Contrib. 2 Protocol Analysis

Provide a general analytical model based on a parameterized MDP

Based on the access probability p_n , we define the parameter vector: $\mathbf{p} \triangleq (p_0, p_1, \dots, p_{\gamma-1})$

	\downarrow
State	The <i>state</i> , denoted by <i>n</i> , is defined as the number of ongoing transmissions in the carrier sensing phase.
Action	The <i>action</i> , denoted by <i>a</i> , means that <i>a</i> users begin new transmissions after carrier sensing at state <i>n</i> .
Parameterized Policy	The <i>parameterized policy</i> , denoted by $\pi_{n,a}(\mathbf{p})$, is defined as the probability that <i>a</i> out of $N - n$ users begin to transmit at state <i>n</i> .
Transition Probability	The <i>transition probability</i> , denoted by $\varphi_{n,n'}(\mathbf{p})$, is defined as the probability that the next state is <i>n</i> ' when the present state is <i>n</i> .
Roward State	The <i>state reward</i> , denoted by $r_n(\mathbf{p})$, is defined as the average of total packet lengths of all the successful transmissions at state <i>n</i> .
Reward action	The <i>action reward</i> , denoted by $r_{n,a}(\mathbf{p})$, is defined as the reward which is achieved when action <i>a</i> is taken at state <i>n</i> .

Contrib. 2 Protocol Analysis

Theoretical analysis of the state reward $r_n(\mathbf{p})$

We assume that a given packet is being transmitted in both the present and next slots.

 $\xi_{h,h'}(\mathbf{p})$

The probability that there are h' other ongoing transmissions in the next slot when there have been h other ongoing transmissions in the present slot.

 $g_{m,h_1,h_m}(\mathbf{p})$ The probability that there are h_m other ongoing transmissions in the *m*-th slot of a given transmission, and fewer than γ other ongoing transmissions in each of the first *m*-1 slots of the transmission, provided that there are h_1 other ongoing transmissions in the first slot of the transmission.

 $q_{\lambda,h_1}(\mathbf{p})$

The probability that a λ -slot transmission is successful when there are fewer than γ other ongoing transmissions in each of the λ slots of the transmission

 $r_{n,a}(\mathbf{p}) \longrightarrow r_n(\mathbf{p}) \longrightarrow$ Long-term average reward: $R(\mathbf{p}) \Rightarrow$ Throughput

Definition of the optimization problem

Based on the access probability p_n , we define the parameter vector: $\mathbf{p} \triangleq (p_0, p_1, \dots, p_{\gamma-1})$

$$\mathbf{p} \triangleq \left(p_0, p_1, \dots, p_{\gamma-1} \right) \subset \mathbb{D} \triangleq \mathbb{D}_0 \times \mathbb{D}_1 \times \dots \times \mathbb{D}_{\gamma-1}, \text{ where } \mathbb{D}_0 \in (0,1), \ \mathbb{D}_n \in [0,1) \ (n \ge 1)$$

Throughtput $R(\mathbf{p})$ is a function of the parameter vector $\mathbf{p} \rightarrow \exists \mathbf{p} = \mathbf{p}_{opt} \Rightarrow R = R_{max}$

Define the optimization problem $\mathbf{p}_{opt} = \arg \max_{\mathbf{p} \in \mathbb{D}} R(\mathbf{p}), \ R_{\max} = \max_{\mathbf{p} \in \mathbb{D}} R(\mathbf{p})$

Contrib. 3 Protocol Optimization Difficulties of the optimization problem Search $\mathbb{D} \triangleq \mathbb{D}_0 \times \mathbb{D}_1 \times \cdots \times \mathbb{D}_{\gamma-1} \to \text{Find the optimal } \mathbf{p}$ that maximizes $R(\mathbf{p})$ **Modern Optimization** The algorithms possibly takes a very long time to find the near-Algorithms (such as optimal **p**, and are required to set opportune starting points. **Genetic Algorithm**) The term $q_{\lambda,h1}(\mathbf{p})$ in $r_n(\mathbf{p})$ is obtained recursively and the number **Gradient-Based** of recursive steps increases with the geometrically distributed **Methods** packet length. \rightarrow The term $r_n(\mathbf{p})$ is difficult to be calculated. A policy iteration type algorithm that optimizes a special category of parameterized MDPs

Two Conditions	1. 2.	The state space can be partitioned such that the transition probabilities and rewards of all states are affected by a distinct parameter or none of parameters in p . The change of the parameters in p does not affect the conditional probability of the state value, known to be included in a partition.

11

Difficulties of the optimization problem

Search $\mathbb{D} \triangleq \mathbb{D}_0 \times \mathbb{D}_1 \times \cdots \times \mathbb{D}_{\gamma-1} \to \text{Find the optimal } \mathbf{p}$ that maximizes $R(\mathbf{p})$

The First Condition of the Policy Iteration

The state space can be partitioned such that the transition probabilities and rewards of all states are affected by a distinct parameter or none of parameters in **p**.

The Researched Parameterized MDP

- 1. The reward $r_0(\mathbf{p})$ is affected by all the parameters in \mathbf{p}
- 2. The reward $r_n(\mathbf{p})$ for $0 < n < \gamma$ is affected by all the parameters in \mathbf{p} except p_0

MDP Modification **Mod. 1**: Modify $r_n(\mathbf{p})$ to $r_n^*(\mathbf{p})$ and establish an upper bound on the throughtput \rightarrow Obtain an important observation \rightarrow **Mod. 2**: Modify $r_n(\mathbf{p})$ to $r_n^{**}(\mathbf{p})$ and propose a heuristic design

Mod. 1: Establish an upper bound on the throughtput

Mod. 1: Solve \mathbf{p}_{upp} by the policy iteration (Algorithm 1)

1. Initialization	Choose an arbitrary parameter vector $\mathbf{p}^{(0)} \subset \mathbb{D}$ as the initial value and set $k = 0$.			
2. Evaluation	Calculate the relative value $v_n^*(\mathbf{p}^{(k)})$ for each $n \in S$ by Bellman equation.			
3. Improvement	For $n = 0, 1,, \gamma - 1$, update the new parameter as: $p_n^{(k+1)} = \arg \max_{p_n \in \mathbb{D}} r_n^*(p_n) + \sum_{n' \in \mathcal{S}} \phi_{n,n'}(p_n) v_{n'}^*(\mathbf{p}^{(k)})$			
4. Stopping Rule	If $\mathbf{p}^{(k+1)} = \mathbf{p}^{(k)}$, set $\mathbf{p}_{upp} = \mathbf{p}^{(k)}$ and stop. Otherwise, set $k = k + 1$ and go to step 2.			

Initialization: We set $p_0^{(k)} = \gamma/N$, and $p_n^{(k)} = 0$ for $1 \le n \le \gamma - 1$.

Conclusion: It can be seen that only **6 iterations** are needed to satisfy the stopping rule.

- Contrib. 3 Protocol Optimization
- Mod 1: Comparisons between the throughput and its upper bound

Remark: We set the maximum number of allowed retransmissions to be infinitely large.

Conclusion: Relative gaps between the throughput performance and its upper bound are significant correlation with the parameter Λ and the parameter γ

Mod. 2: Propose of the heuristic design

Reward $r_n(\mathbf{p})$		The reward, denoted by $r_n(\mathbf{p})$, is defined as the average of total packet lengths of all the successful transmissions at state <i>n</i> .			
		(I) If $n \ge \gamma$, no reward is gained. (II) If $n < \gamma$ and $0 \le a \le \gamma - n$, the total packet lengths of these <i>a</i> new transmissions are regarded as the positive reward.			

(III) If $n < \gamma$ and $\gamma - n < a \le N - n$, no positive reward is gained and the total packet lengths of the *n* ongoing transmissions in the carrier sensing phase are regarded as the negative reward.

$$\rightarrow r_n^{**}(\mathbf{p}) = \Lambda \sum_{a=0}^{\gamma-n} a \cdot \mu_{n,a}(\mathbf{p}_n) - 2n\Lambda \sum_{a=\gamma-n+1}^{N-n} \mu_{n,a}(\mathbf{p}_n)$$
$$\rightarrow R^{**}(\mathbf{p}) = \sum_{n=0}^{\gamma-1} \mu_n(\mathbf{p}) r_n^{**}(\mathbf{p})$$

 \rightarrow Satisfy the first condition of the policy iteration

Observation

Reward

 $r_{n}^{**}(\mathbf{p})$

When the system operates with **p** whose values are close to \mathbf{p}_{opt} , there is a small probability that a transmission suffers from severe conflict.

SevereIf a given transmission collides with new transmissions at more thanConflictone slot, we say this transmission suffers from severe conflict.

Mod. 2: Propose of the heuristic design

Optimization Problem

Reward $r_n(\mathbf{p})$	The reward lengths of a	, denoted by $r_n(\mathbf{p})$, is defined as the average of total packet all the successful transmissions at state n .			
Reward $r_n^{**}(\mathbf{p})$	(I) If $n \ge \gamma$ (II) If $n < \gamma$ transmission (III) If $n < \gamma$ the total parameters $r_n^{**}(\mathbf{p}) =$ $\rightarrow R^{**}(\mathbf{p})$ \rightarrow Satisfy t	p, no reward is gained. p and $0 \le a \le \gamma - n$, the total packet lengths of these <i>a</i> new ns are regarded as the positive reward. p and $\gamma - n < a \le N - n$, no positive reward is gained and cket lengths of the <i>n</i> ongoing transmissions in the carrier ase are regarded as the negative reward. $= \Lambda \sum_{a=0}^{\gamma-n} a \cdot \mu_{n,a}(p_n) - 2n\Lambda \sum_{a=\gamma-n+1}^{N-n} \mu_{n,a}(p_n)$ $= \sum_{n=0}^{\gamma-1} \mu_n(\mathbf{p}) r_n^{**}(\mathbf{p})$ he first condition of the policy iteration			
Definition of The		$\mathbf{p}_{heu} = \arg \max_{\mathbf{p} \in \mathbb{D}} R^{**}(\mathbf{p}), \ R_{heu} = \max_{\mathbf{p} \in \mathbb{D}} R(\mathbf{p}_{heu})$			

Mod. 2: Solve \mathbf{p}_{heu} by the policy iteration (Algorithm 2)

1. Initialization	n Choose an arbitrary parameter vector $\mathbf{p}^{(0)} \subset \mathbb{D}$ as the inivalue and set $k = 0$.				
2. Evaluation	Calculate the relative value $v_n^*(\mathbf{p}^{(k)})$ for each $n \in S$ by Bellman equation.				
3. Improvement	For $n = 0, 1,, \gamma - 1$, update the new parameter as: $p_n^{(k+1)} = \arg \max_{p_n \in \mathbb{D}} r_n^{**}(p_n) + \sum_{n' \in S} \phi_{n,n'}(p_n) v_{n'}^{**}(\mathbf{p}^{(k)})$				
4. Stopping Rule	If $\mathbf{p}^{(k+1)} = \mathbf{p}^{(k)}$, set $\mathbf{p}_{upp} = \mathbf{p}^{(k)}$ and stop. Otherwise, set $k = k + 1$ and go to step 2.				

Mod. 2: The iteration procedure of the parameters **p** and $R^*(\mathbf{p})$

Parameters: N=10, $\gamma=3$, $\Lambda=20$

Parameters: N=20, $\gamma=5$, $\Lambda=50$

Initialization: We set $p_0^{(k)} = \gamma/N$, and $p_n^{(k)} = 0$ for $1 \le n \le \gamma - 1$.

Conclusion: It can be seen that only **5 iterations** are needed to satisfy the stopping rule.

Mod 2: Comparisons between the heuristic design and *GlobalSearch* (*GS*)

The GS Solve (in *MATLAB Optimization Toolbox*) can be used to find global minima.

N	Algorithm	Time	p 0	<i>p</i> 1	p ₂	p 3	p 4	R
10	GS Solve	4297.92s	0.22079	0.16006	0.09995	0.04517	0.00699	3.5353
	Heuristic Design	18.77s	0.22127	0.15934	0.09869	0.04402	0.00655	3.5348
10	GS Solve	2991.38s	0.17681	0.12568	0.07676	0.03384	0.00509	3.5090
12	Heuristic Design	24.17s	0.17711	0.12505	0.07574	0.03295	0.00476	3.5085
1.4	GS Solve	2886.17s	0.14766	0.10358	0.06237	0.02708	0.00401	3.4928
14	Heuristic Design	30.28 s	0.14786	0.10303	0.06152	0.02635	0.00374	3.4923
16	GS Solve	5758.00s	0.12683	0.08814	0.05254	0.02257	0.00331	3.4818
	Heuristic Design	43.00 s	0.12698	0.08765	0.05181	0.02196	0.00309	3.4813
10	GS Solve	19283.63s	0.11120	0.07673	0.04540	0.01936	0.00281	3.4738
18	Heuristic Design	85.78s	0.11131	0.07629	0.04476	0.01883	0.00263	3.4733
20	GS Solve	29465.91s	0.09901	0.06795	0.03998	0.01694	0.00245	3.4678
	Heuristic Design	86.02s	0.09910	0.06754	0.03941	0.01648	0.00228	3.4672

Conclusion: The near-optimal parameter vectors and throughtput solved in the heuristic design are basically the same as the optimal results solved by "GlobalSearch".

- Contrib. 3 Protocol Optimization
- Mod 2: Comparisons between the heuristic design and XL-CSMA

Remark: We set the maximum number of allowed retransmissions to be infinitely large.

XL-CSMA Each user adopts the access probabilities $p_n = \max(0, (\gamma^* - n) / (N - n))$ for $n = 0, 1, ..., \gamma - 1$, where the tuning parameter γ^* is an integer not larger than γ .

Conclusion: The heuristic design **significantly outperforms** optimal XL-CSMA in all the cases.

Mod 2: Convert the generalized *p*-persistent CSMA to a CSMA/CA

Remark: We set the maximum number of allowed retransmissions to 4.

Convert to CSMA/CA To convert the generalized *p*-persistent CSMA to a CSMA/CA scheme for IEEE 802.11-like networks, we require each user to maintain **contention window** *n* with the constant size $W_n = \lfloor 2/p_n - 1 \rfloor$ if $p_n > 0$ for n = 0, 1, ..., c - 1.

