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Abstract—This paper considers a multiple-access system with
multiple-packet reception (MPR) capability γ, i.e., a packet
can be successfully received as long as it overlaps with γ − 1
or fewer other packets at any instant during its lifetime. To
efficiently utilize the MPR capability, this paper generalizes p-
persistent carrier-sense multiple access (CSMA) to consider that
a user with carrier sensing capability c adopts the transmission
probability pn if this user has sensed n ongoing transmissions for
n = 0, 1, . . . , c− 1. This paper aims to model the characteristics
of such CSMA and to design transmission probabilities for
achieving maximum saturation throughput. To this end, we first
formulate such CSMA as a parameterized Markov decision
process (MDP) and use the long-run average performance to
evaluate the saturation throughput. Second, by observing that the
exact values of optimal transmission probabilities are in general
infeasible to find, we modify this MDP to establish an upper
bound on the maximum throughput, and modify this MDP again
to propose a heuristic design with near-optimal performance.
Simulations with respect to a wide range of configurations are
provided to validate our study. The throughput performance
under more general models and the robustness of our design
are also investigated.

Index Terms—Access protocols, multiple-packet reception, per-
formance analysis, Markov decision process

I. INTRODUCTION

A. Motivation

IN a random access system, the role of medium access con-
trol (MAC) mechanism is to allow a set of uncoordinated

users to efficiently share the same communication channel.
On account of their distributed nature and inherent flexibility,
carrier-sense multiple access (CSMA)-type protocols have
been the foundation of random access based MAC for many
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communications standards. By the help of carrier sensing, they
are able to support variable packet lengths and provide signif-
icant performance improvement over the pioneering ALOHA-
type protocols.

The p-persistent CSMA protocol [1], one of the original
versions of CSMA, was proposed by Kleinrock and Toba-
gi in 1975. For the following three reasons, it has drawn
much research interest during recent decades. First, the p-
persistent CSMA simply allows a user to begin a packet
transmission with a common probability p whenever this
user has sensed channel idle, and thus is well-suited for
implementation. Second, the p-persistent CSMA is analytically
tractable due to its memoryless nature in access. Third, the
behaviors of many sophisticated CSMA-type protocols can be
closely approximated by p-persistent CSMA (at least from the
standpoint of maximum throughput) if the p value is selected
to guarantee that the same average backoff interval is used [2],
[3]. This correspondence suggests that it is essential to derive
the optimal p for achieving the maximum throughput in p-
persistent CSMA.

Early studies on p-persistent CSMA assumed the single-
packet reception (SPR) model, which allows a packet to be
successfully received only when it does not overlap with
another on the channel. Bianchi [2] derived the saturation
throughput of p-persistent CSMA. Calı̀ et al. [3] and Bononi
et al. [4] used the balance between collision durations and
idle times to approximate the optimal p for maximizing the
saturation throughput. Bruno et al. [5] formally proved this
approximation is asymptotically exact.

Recently, the SPR assumption has become less relevan-
t due to the advance of multiple-packet reception (MPR)
techniques [6], [7] that enable successful receptions of time-
overlapping packets at the physical layer. One such exam-
ple is multi-user multiple-input multiple-output (MU-MIMO)
that has been supported in IEEE 802.11ac; an evolutionary
overview of this technique can be found in [8]. In this paper,
we restrict our attention to a specific type of MPR, namely
γ-MPR, which signifies the assumption that a packet can be
successfully received as long as it overlaps with γ−1 or fewer
other packets at any instant during its lifetime. Here, γ refers
to the MPR capability. To convert the MPR capability to the
MAC throughput as efficiently as possible, it is desirable to
gain a clear insight into the impact of γ-MPR on the analysis
and design of p-persistent CSMA.

With this goal in mind, Zhang et al. [9] showed that the
maximum saturation throughput per unit cost increases with
γ, Bae et al. [10] dealt with the optimal p for maximizing
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the saturation throughput under γ-MPR, and Chan et al. [11]
derived the maximum decentralized stable throughput. How-
ever, it has been pointed out in [12] that p-persistent CSMA
cannot be used to efficiently utilize the γ-MPR channel. The
reason is that p-persistent CSMA operates in a synchronous
mode, i.e., it allows a new transmission to begin only after the
completion of ongoing transmissions. This restriction leads to
bandwidth waste when the number of ongoing transmissions
is smaller than γ. Clearly, such waste would become severer
if different transmissions last for different durations.

To combat this weakness, Chan et al. [12] proposed an ex-
tension of p-persistent CSMA that operates in an asynchronous
mode, called XL-CSMA. In XL-CSMA, a user is able to detect
if the number of ongoing transmissions is 0, 1, . . . , c−1 or ≥ c,
and is allowed to adopt different transmission probabilities
according to the sensed number of ongoing transmissions.
Here, we refer to c as carrier sensing capability. However,
this work did not provide a general analytical model for
characterizing XL-CSMA, and the setting of transmission
probabilities in XL-CSMA is far from the optimum, which will
be shown in Section VIII. Moreover, the design of XL-CSMA
assumes c = γ, which is usually unrealistic in distributed
wireless networks with hardware cost constraints.

Inspired by the insights in [12], this paper focuses on the
following fundamental questions.

(i) By taking into account an arbitrary carrier sensing ca-
pability, how to design a generalization of p-persistent
CSMA under γ-MPR and how to implement it in IEEE
802.11-like networks?

(ii) How to analyze the saturation throughput of such CSMA
under γ-MPR?

(iii) How to design the optimal transmission probabilities for
maximizing the saturation throughput of such CSMA
under γ-MPR?

Note that these questions have been investigated in [3]–[5] for
SPR (i.e., γ = 1), and also have been investigated in [9], [10],
[12] when each user only can sense channel idle or busy (i.e.,
c = 1).

B. Contributions

The contributions of this paper are summarized as follows.
(i) We generalize traditional p-persistent CSMA to consider

that a user with the carrier sensing capability c adopts
the transmission probability pn if this user has sensed n
ongoing transmissions at the beginning of a generic slot
for n = 0, 1, . . . , c − 1, and implement such CSMA in
IEEE 802.11-like networks using c backoff processes.

(ii) We formulate the generalized p-persistent CSMA as a
parameterized Markov decision process (MDP) and use
the long-term average reward to evaluate the saturation
throughput.

(iii) By observing that the exact values of optimal trans-
mission probabilities are in general infeasible to find,
we modify this MDP to establish an upper bound on
the maximum throughput, and then modify this MDP
again to propose a heuristic design with near-optimal
performance.

(iv) We extend the throughput analysis to more general mod-
els, and show that our heuristic design is robust to them
in many scenarios.

Our work to be presented in this paper can include the studies
in [3]–[5], [9], [10], [12] as particular cases.

C. Other Related Work
Motivated by [12], many recent literatures have been dedi-

cated to the design and analysis of asynchronous CSMA/CA
for better utilizing the γ-MPR channel. A comprehensive
survey of them can be found in [13].

Babich et al. [14] modified the IEEE 802.11 CSMA/CA
protocol to allow a user to decrease its backoff counter as
soon as the number of sensed ongoing transmissions is below
a threshold. Mukhopadhyay et al. [15] proposed a solution
to address the ACK-delay problem, which was not considered
in [14]. In their solution, a user is required to freeze its backoff
counter once the number of ongoing transmissions exceeds
γ−1 and resume decrementing its backoff counter only when
the channel becomes idle again. Wu et al. [16] further modified
the scheme in [14] to require that all overlapping transmissions
are completed simultaneously (by packet fragmentation or
aggregation) even if they are begun at different time instants.
One of our prior works [17] modified the IEEE 802.15.4
CSMA/CA protocol to allow a user to decrease its backoff
counter at every slot boundary and begin a packet transmission
if this user has sensed fewer than a certain number of ongoing
transmissions at the end of backoff. It will be shown in Section
III that the generalized p-persistent CSMA considered in this
paper can also be converted to a CSMA/CA scheme, and
will be shown in Section VIII that our design enjoys better
throughput performance than state-of-the-art schemes.

For these asynchronous CSMA/CA, the analytical models
developed in [14], [16]–[18] are based on Markov processes,
while the one developed in [15] is based on a renewal-theoretic
fixed-point analysis. It should be noted that the models in [14],
[17] share some similarities with the one to be presented in
this paper, as [14], [17] studied CSMA/CA using the behavior
of p-persistent CSMA. However, [14], [17] assumed that the
transmission probabilities are the same if the sensed number
of ongoing transmissions is below a threshold, which is more
restrictive than the general setting considered in this paper.

To our best knowledge, there is no previously known
theoretical investigation on the optimal access parameters for
asynchronous CSMA-type protocols under MPR.

The remainder of this paper is organized as follows. In
Section II, we set up the system model. Section III describes
the design of the generalized p-persistent CSMA and how to
convert it to CSMA/CA. In Section IV, we formulate such
CSMA as an MDP to evaluate the saturation throughput.
Built on some modifications on this MDP, an upper bound
on the maximum throughput is provided in Section V, and
a heuristic design with near-optimal performance is proposed
in Section VI. The throughput analysis under more general
modes is discussed in Section VII. In Section VIII, we
present simulations to verify the studies in Sections IV–VII
and compare our design against other schemes. Section IX
concludes this paper.
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II. SYSTEM MODEL

We consider a wireless network, where a finite number, N ≥
2, of infinitely backlogged users contend to transmit packets
to a common receiver. All the users are within the reception
range of the receiver and are within the interference range of
each other. The time axis is divided into time slots of equal
duration and the slot boundaries are known to the users.

We assume that each user can perform carrier sensing to
detect if the number of ongoing transmissions is 0, 1, . . . , c−1
or ≥ c, and the time required to do so is negligible compared
with the slot length. Such enhanced carrier sensing can be
implemented if each user is equipped with an array of an-
tennas [14], [15], [19]. The signal processing algorithms [20]
involved in this case usually follow the eigenvalue analysis of
the correlation matrix, and hence their computational burden
is acceptable in some kinds of distributed networks. Moreover,
the current antenna miniaturization technology [21] is able to
produce acceptable-size arrays of 2.4G/5.8Ghz antennas. Nev-
ertheless, taking into account the difficulty in implementation,
this paper will consider all possible values of c.

By assuming negligible wireless fading effect, we consider
that the receiver has the γ-MPR capability, i.e., can recover all
n signals simultaneously transmitted in a slot if 1 ≤ n ≤ γ and
recover none of them otherwise. Furthermore, by assuming
that channel coding is not used to protect the packets, we
consider that a packet can be successfully received if it
overlaps with γ−1 or fewer other packets at any instant during
its transmission lifetime, and is discarded otherwise. To avoid
trivial cases, we consider 1 ≤ γ < N .

The receiver sends an acknowledgement (ACK) on a sepa-
rate narrow feedback channel immediately after the end of
every successful transmission; if multiple successful trans-
missions are completed simultaneously, the receiver sends an
aggregated ACK. If the transmission outcome is unsuccessful,
the corresponding sender is required to retransmit the same
packet at the next transmission within the retry limit. We also
assume that the ACK reception time is negligible compared
with the slot length, as in [1], [5], [12], [14].

For MAC analysis under different types of services, the
packet lengths in units of slot (i.e., the service times of
agents in queuing theory) are often modeled as exponentially
distributed variables. In this paper, to simplify the presentation,
we consider that the packet lengths always correspond to
integer numbers of slots, and thus assume they follow the
geometric distribution with average value Λ > 1, which
is a discrete analogue of the exponential distribution. More
specifically, for λ = 1, 2, . . ., the probability that a packet has
a length equal to λ slots is (1/Λ)(1− 1/Λ)λ−1.

To maintain the analytical tractability of the problem,
following [3]–[5], [14], we assume that successive retrans-
missions of the same packet are independent although they
obviously have the same length. As such, if there is an ongoing
transmission at a slot, this transmission will be completed at
the end of this slot with probability 1/Λ. The accuracy of this
assumption will be examined via simulations in Section VIII.

In this paper, we will mainly focus on the aforementioned
system model. The extension to more general models will be
discussed in Section VII.
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Fig. 1. An example of the working procedure of the generalized p-persistent
CSMA for the case of N = 3 and c = γ = 2.

Remark 1: The aforementioned system model with c = γ = 1
is exactly the model considered in [5] for studying traditional
p-persistent CSMA under SPR. Such consistency allows us
to examine the effect of MPR capability and carrier sensing
capability on the performance improvement.

III. PROTOCOL DESCRIPTION

To comply with the γ-MPR capability, we assume 1 ≤
c ≤ γ and consider a natural generalization of the traditional
p-persistent CSMA. That is, each silent user is required to
perform carrier sensing at the beginning of every slot; if a
silent user detects n ≤ c − 1 ongoing transmissions at the
beginning of a slot, this user will begin a transmission with
probability 0 ≤ pn < 1, otherwise, this user will begin a
transmission with probability pn = 0. To avoid that all users
will always keep silent once the channel has become idle, it is
natural to require 0 < p0 < 1. We further define the following
parameter vector:

p , (p0, p1, . . . , pc−1),

with the value domain D , D0 × D1 × · · · × Dc−1, where
D0 is the real-number interval (0, 1), Dn is the real-number
interval [0, 1) for 1 ≤ n ≤ c − 1, and × is the Cartesian
product. In addition, for the convenience of the following
analysis, although it is impossible for a user to sense N
ongoing transmissions, we assume that a user will adopt the
transmission probability pN = 0 if there are N ongoing
transmissions.

An example of the working procedure of the generalized
p-persistent CSMA for the case of N = 3 and c = γ = 2 is
illustrated in Fig. 1.

To convert the generalized p-persistent CSMA to a CS-
MA/CA scheme for IEEE 802.11-like networks, we require
each user to maintain contention window n with the constant
size Wn = ⌊2/pn − 1⌉ if pn > 0 for n = 0, 1, . . . , c − 1.
Here, ⌊x⌉ denotes the integer nearest to x. For each such
contention window n, we further require a user to maintain
backoff counter bn with an initialized value that is an integer
drawn uniformly from the range [0,Wn − 1], and to perform
the following steps as soon as this user senses n ongoing
transmissions at the carrier sensing phase of a slot.

(i) If bn > 0, decrease bn by one.
(ii) Otherwise, immediately send a packet and reset bn as an

integer drawn uniformly from the range [0,Wn − 1].
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IV. ANALYTICAL MODELING

Given the number of users N , the average packet length Λ,
the MPR capability γ and the carrier sensing capability c, we
define the network throughput R(p) as the long-term average
successfully transmitted packet lengths of all users per slot
when the parameter vector p is adopted. Obviously, we have
0 ≤ R(p) ≤ γ for any p ∈ D.

In this section, we formulate the generalized p-persistent
CSMA under γ-MPR as a parameterized MDP [22], [23], and
use the long-term average reward of this MDP to theoretically
evaluate R(p).

A. MDP Formulation

Under the generalized p-persistent CSMA, the ongoing
transmissions at a generic slot are composed of two disjoint
sets: the ongoing transmissions in the carrier sensing phase
and the ongoing transmissions that are begun after the carrier
sensing phase (also called new transmissions at this slot).

Consider a state process (Xt)t∈N, where Xt ∈
{0, 1, . . . , N} denotes the number of ongoing transmissions
in the carrier sensing phase of slot t. From the descriptions in
Sections II and III, we see that each silent user independently
begins a new transmission with probability pXt after carrier
sensing at slot t, while every ongoing transmission at slot t is
independently completed at the end of slot t with probability
1/Λ. This observation indicates that the probability of moving
to the next state in (Xt)t∈N depends only on the present state
and not on the previous states. Thus, (Xt)t∈N can be viewed
as a discrete-time Markov chain with the finite state space
S , {0, 1, . . . , N}.

Based on this discrete-time Markov chain, we define a pa-
rameterized MDP, M, by introducing the following definitions
of actions, parameterized policy, state transition probabilities
and reward.

(i) Actions: If action a is chosen at state n, it means that a
users begin new transmissions after carrier sensing when
the state is n. Let An denote the set of all possible actions
when the state is n. Since pn = 0 when c ≤ n ≤ N , we
find

An =

{
{0, 1, . . . , N − n} if 0 ≤ n ≤ c− 1,
{0} otherwise.

(ii) Parameterized policy: We define a parameterized policy
that chooses action a at state n with probability µn,a(p)
for each n ∈ S and each a ∈ An. If action a is chosen at
state n, it means that a out of N −n users actually begin
to transmit after carrier sensing when these N − n users
independently begin to transmit with probability pn. So,
we have

µn,a(p) =

(
N − n

a

)
pan(1− pn)

N−n−a,

∀n ∈ S, ∀a ∈ An.

(1)

(iii) State transition probabilities: We define the state transi-
tion probabilities by

βn,n′(p) , Pr(xt+1 = n′|xt = n,p), ∀n, n′ ∈ S.

For a transition from Xt = n to Xt+1 = n′, if action a
is chosen, it is required that a should be not smaller than
max(0, n′−n) but not larger than N −n, and n+a−n′

out of n+a users complete their transmissions at the end
of slot t. Then, we have

βn,n′(p) =
N−n∑

a=max(0,n′−n)

µn,a(p)

(
n+ a

n+ a− n′

)
( 1

Λ

)n+a−n′(
1− 1

Λ

)n′

, ∀n, n′ ∈ S.

(2)

(iv) Reward: The reward at state n, denoted by rn(p), is
defined as the average of total packet lengths of all the
successful transmissions that are begun when the state is
n. We further define rn,a(p) as the reward that is gained
when action a is chosen at state n. So, we have

rn(p) =
∑
a∈An

µn,a(p)rn,a(p), ∀n ∈ S. (3)

In the following subsection, we will present an evaluation
of rn,a(p) to complete the formulation of M.

B. Reward Evaluation

Since that the silent users are allowed to begin transmissions
even if the channel is found busy, the success of a λ-slot
transmission not only depends on the interference of other
transmissions at its first transmission slot, but also depends
on the interference during its remaining λ − 1 transmission
slots. Due to this property, we use qλ,h1(p) to denote the
success probability of a λ-slot transmission with h1 other
ongoing transmissions in its first transmission slot. By taking
into account all possible packet lengths, we have

rn,a(p) = a
∞∑
λ=1

λ

Λ

(
1− 1

Λ

)λ−1

qλ,n+a−1(p),

∀n ∈ S, ∀a ∈ An.

(4)

It remains only to evaluate qλ,h1(p) for all possible λ and
h1. To this purpose, by assuming a given packet is being
transmitted in both the present and next slots, we use ξh,h′(p)
to represent the transition probability that there are h′ other
ongoing transmissions in the next slot when there have been
h other ongoing transmissions in the present slot. For this
transition, if j out of these h other transmissions are completed
at the end of present slot, we know h′−h+j out of N−1−h+j
silent users will begin their transmissions in the next slot.
Thus, for 0 ≤ h ≤ N − 1 and 0 ≤ h′ ≤ N − 1, we have

ξh,h′(p) =
h∑

j=0

(
h

j

)( 1

Λ

)j(
1− 1

Λ

)h−j

(
N − 1− h+ j

h′ − h+ j

)
ph

′−h+j
h−j+1 (1− ph−j+1)

N−1−h′
.

(5)

Let gm,h1,hm(p) describe the probability of having hm other
ongoing transmissions in the m-th slot of a given transmission
and having fewer than γ other ongoing transmissions in each
of the first m − 1 slots of this given transmission, provided
that there are h1 other ongoing transmissions in the first slot



5

of this given transmission. Obviously, g1,h1,h1(p) = 1. Then,
for m = 2, . . . , λ, we can recursively obtain

gm,h1,hm(p) =

γ−1∑
hm−1=0

gm−1,h1,hm−1(p)ξhm−1,hm(p). (6)

As a λ-slot transmission is successful if and only if there
are fewer than γ other ongoing transmissions in each of the
λ slots of this transmission, we obtain

qλ,h1(p) =

γ−1∑
hλ=0

gλ,h1,hλ
(p). (7)

Therefore, rn,a(p) can be computed for each n ∈ S and
each a ∈ An using Eqs. (4)–(7).

C. Average Reward

As p0 > 0, we from Eqs. (1) and (2) observe that for every
p ∈ D, it is possible to go from every state to every state
in the Markov chain (Xt)t∈N with positive probability (not
necessarily in one move). This implies that the parameterized
MDP M is ergodic for every p ∈ D.

Due to the ergodic property, M has a long-term average
reward for every p ∈ D, defined by

lim
T→∞

1

T
Ep

[ T−1∑
t=0

rxt(p)
]
, (8)

where Ep denotes the expectation taken with respect to the
distribution of M with the parameters p. From the MDP for-
mulation in Section IV.A, we see that the network throughput
R(p) is exactly the long-term average reward defined in (8).

Still due to the ergodic property, R(p) is independent of the
initial state. Furthermore, the steady state probability of state
n, πn(p), is unique for every p ∈ D. We also from (4) see
rn(p) = 0 when n ≥ c. As such, R(p) can be calculated by

R(p) =

c−1∑
n=0

πn(p)rn(p), (9)

where π0(p), π2(p), . . . , πc−1(p) can be obtained by the
balance equations:∑

n∈S
πn(p)βn,n′(p) = πn′(p), ∀n′ ∈ S. (10)

Remark 2: Our analytical model reduces to the model present-
ed in [3]–[5] for analyzing the traditional p-persistent CSMA
under SPR if we set γ = 1, and reduces to the model presented
in [9], [10], [12] for analyzing the traditional p-persistent
CSMA under γ-MPR if we set c = 1.

D. Discussions

Following the above analysis, a natural design goal is to
find the optimal p that maximizes R(p), i.e.,

Rmax = max
p∈D

R(p), popt = argmax
p∈D

R(p). (11)

To solve this problem for a general network configuration
with 1 ≤ c ≤ γ, a traditional thought is to use gradient-
based methods [22] that have been widely applied to optimize

the parameterized policy of Markov systems. However, it is
difficult to calculate the gradient of R(p) when 1 < c ≤
γ, since that, as shown in Eqs. (4)–(7), the term qλ,h1(p) in
rn(p) is obtained recursively and the number of recursive steps
increases with the geometrically distributed packet length.

On the other hand, a policy iteration type algorithm was pro-
posed in [23] to optimize a special category of parameterized
MDP, which satisfies both of the following two conditions:

(i) C1: the state space can be partitioned such that the
transition probabilities and rewards of all states in each
partition are not affected by any parameter in p or are
affected by a distinct parameter in p.

(ii) C2: the change of the parameters in p does not affect the
conditional probability of the state value when this state
is known to be included in a partition.

Unfortunately, M with 1 < c ≤ γ does not belong to this
category, due to the fact that, as shown in Eqs. (3)–(7), the
reward r0(p) is affected by all the parameters in p and the
reward rn(p) for 1 ≤ n ≤ c − 1 is affected by all the
parameters in p except p0.

The aforementioned difficulties in obtaining popt motivate
us to modify M such that an upper bound on Rmax can
be efficiently found, and to propose a heuristic design that
can achieve the throughput performance close to this upper
bound. These two issues will be dealt with in Sections V
and VI, respectively. Moreover, it will be shown in Section
VIII that our heuristic design and the design obtained from
“GlobalSearch” in the MATLAB Global Optimization Toolbox
enjoy almost the same throughput performance.

V. AN UPPER BOUND ON MAXIMUM THROUGHPUT

In this section, we consider a parameterized MDP modified
from M and apply the policy iteration proposed in [23] to
efficiently find an upper bound on Rmax.

A. MDP Modification

We modify M to M∗ by only redefining the reward at
each state. Here, the reward at state n of M∗, denoted by
r∗n(p), is defined as the average of total packet lengths of the
transmissions, each of which is begun when the state is n and
overlaps with γ − 1 or fewer other packets at the first slot of
its transmission. By this definition, we have

r∗n(p) = Λ

γ−n∑
a=0

a · µn,a(p), ∀n ∈ S. (12)

As M and M∗ share the same state space and the same
transition probabilities, M∗ is ergodic as well. Hence, similar
to Eq. (9), the long-term average reward of M∗, denoted by
R∗(p), can be calculated as

R∗(p) =

c−1∑
n=0

πn(p)r
∗
n(p). (13)

By comparing Eqs. (3), (4), (9), (12) and (13), we see

R∗(p) ≥ R(p), ∀p ∈ D. (14)
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Hence, to provide an upper bound on the maximum network
throughput Rmax, we formulate the following optimization
problem:

Rupp = max
p∈D

R∗(p), pupp = argmax
p∈D

R∗(p). (15)

B. Policy Iteration Algorithm
As M∗ is ergodic, the relative value due to starting from

state n of M∗ can be defined as

v∗n(p) , E
{ ∞∑

t=0

r∗xt
(p)−R∗(p)

∣∣∣x0 = n
}
, ∀n ∈ S. (16)

Furthermore, for each given p ∈ D, all v∗n(p)s satisfy the
following relative value Bellman equation [24]:

v∗n(p) = r∗n(p)−R∗(p)+
∑
n′∈S

βn,n′(p)v∗n′(p), ∀n ∈ S. (17)

From the description of M∗ in Section V.A, we see that
the transition probabilities and reward of state n are only
affected by the parameter pn if 0 ≤ n ≤ c − 1 and are
unaffected by any parameter in p otherwise. Hence, M∗

can be partitioned to satisfy both of the conditions C1 and
C2 introduced in Section IV.D. Owing to this property, we
simplify the policy iteration algorithm proposed in [23] to
comply with the specific formulation of our problem. The
procedure is based on the relative value Bellman equation (17)
and is summarized in Algorithm 1 below. Interested readers
are referred to [23] for the convergence proof.

Algorithm 1 Policy iteration algorithm to find pupp.
1: Initialization. Choose an arbitrary parameter vector

p(0) ∈ D as the initial value and set k = 0.
2: Evaluation. Calculate the relative value v∗n(p

(k)) for each
n ∈ S by Eq. (17).

3: Improvement. Update the new parameter as

p(k+1)
n = arg max

p̃n∈Dn

r∗n(p̃n) +
∑
n′∈S

βn,n′(p̃n)v
∗
n′(p(k))

(18)
for n = 0, 1, . . . , c − 1. If there exists p̃n = p

(k)
n that

attains the maximum in Eq. (18), we set p(k+1)
n = p

(k)
n .

4: Stopping Rule. If p(k+1) = p(k), set pupp = p(k+1) and
stop. Otherwise, set k = k + 1 and go to step 2.

A numerical experiment of Algorithm 1 is illustrated in
Fig. 2 for the case of N = 20, c = γ = 5 and Λ = 50.
We set p(0)0 = γ/N and p

(0)
n = 0 for 1 ≤ n ≤ c− 1. It can be

seen that Algorithm 1 iterates only 6 times to find

pupp = [0.08237, 0.06124, 0.04086, 0.02220, 0.00704],

Rupp = 4.1545.

VI. A HEURISTIC DESIGN

As mentioned at the end of Section IV, it is in general
infeasible to find exact popt. To overcome this difficulty,
this section proposes a heuristic approach for approximating
popt. Moreover, a method to reduce computation overhead
is presented. It will be shown via numerical results that our
design enjoys near-optimal performance.
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Fig. 2. The iteration procedure of the parameters p in Algorithm 1 and the
corresponding R∗(p) for the case of N = 20, c = γ = 5 and Λ = 50.

N = 10 N = 20 N = 40

c = 2
Λ = 10 0.0007440 0.0007612 0.0007767
Λ = 100 0.0005350 0.0005022 0.0004913

c = 3
Λ = 10 0.001791 0.001988 0.002074
Λ = 100 0.0005975 0.0005659 0.0005.412

c = 5
Λ = 10 0.01945 0.02062 0.02114
Λ = 100 0.01113 0.01189 0.01205

TABLE I
The simulative probability that a generic transmission suffers from severe

conflict when the system operates with pupp under γ = 5.

A. Observation

We first state a simple observation that provides an impor-
tant clue on our heuristic.

Consider a slot during the lifetime of a given transmission.
If there are n (n < γ) ongoing transmissions in the carrier
sensing phase of this slot and more than γ − n new trans-
missions are simultaneously begun at this slot, we say that
this given transmission collides with new transmissions at this
slot. If a given transmission collides with new transmissions
at more than one slot, we say this given transmission suffers
from severe conflict.

In Table I we record the simulative probability that a generic
transmission suffers from severe conflict in a variety of cases
when the system operates with pupp under γ = 5. Each
simulation result is obtained from 10 independent simulation
runs with 107 slots in each run. In all the examined cases, we
see that such probability is at most 0.0007767 for c = 2, at
most 0.002074 for c = 3 and at most 0.02114 for c = 5. On the
other hand, by comparing Eqs. (3), (4), (9), (12) and (13), we
know that the scheme with pupp is in general more aggressive
than that with the correct values of popt. Hence, the following
observation holds.
Observation 1. When the system operates with p whose values
are close to popt, there is a small probability that a generic
transmission suffers from severe conflict.
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B. Design

Inspired by Observation 1, we modify the parameterized
MDP M to M∗∗ by only redefining the reward at each state.
Consider that there are n ongoing transmissions in the carrier
sensing phase of a slot and a new transmissions are begun at
this slot, i.e., action a is chosen at state n. We determine the
reward as follows.

(i) If n ≥ γ, no reward is gained.
(ii) If n < γ and 0 ≤ a ≤ γ − n, the total packet lengths

of these a new transmissions are regarded as the positive
reward.

(iii) If n < γ and γ−n < a ≤ N −n, no positive reward and
the total packet lengths of the n ongoing transmissions
in the carrier sensing phase are regarded as the negative
reward.

Due to the fact that a transmission is completed at the end
of a slot with probability 1/Λ, the average packet length of
each ongoing transmission in the carrier sensing phase can be
calculated as 2Λ and the average packet length of each new
transmission can be calculated as Λ. Hence, the reward at state
n of M∗∗, denoted by r∗∗n (p), can be calculated as

r∗∗n (p) = Λ

γ−n∑
a=0

a · µn,a(p)− 2nΛ
N−n∑

a=γ−n+1

µn,a(p), ∀n ∈ S.

(19)

Then, similar to Eqs. (9) and (13), the long-term average
reward of M∗∗, denoted by R∗∗(p), can be calculated as

R∗∗(p) =

γ−1∑
n=0

πn(p)r
∗∗
n (p). (20)

We are interested in pheu that maximizes R∗∗(p), i.e.,

pheu = argmax
p∈D

R∗∗(p). (21)

By comparing Eqs. (12), (13), (19) and (20), we know that the
scheme with pupp is in general more aggressive than that with
pheu. Hence, the following observation similar to Observation
1 also holds.
Observation 2. When the system operates with p whose values
are close to pheu, there is a small probability that a generic
transmission suffers from severe conflict.

Although the reward at each state calculated in Eq. (19) is
different from that calculated in Eq. (4), it is easy to check that
R∗∗(p) = R(p) if we assume that each transmission collides
with new transmissions with the same probability and never
suffers from severe conflict. So, we propose the following to
approximate popt based on Observations 1 and 2.
Approximation 1. When the system operates with p whose
values are close to popt or pheu, we have R∗∗(p) ≈ R(p).
Furthermore, we have pheu ≈ popt.

From the description of M∗∗, we see that Algorithm 1
can be applied to M∗∗ to iteratively find pheu. Although the
differences are only replacing r∗n(p) by r∗∗n (p) and replacing
R∗(p) by R∗∗(p) in Eqs. (16)–(18), we summarize the
iteration process in Algorithm 2 for the completeness.

Algorithm 2 Policy iteration algorithm to find pheu.
1: Initialization. Choose an arbitrary parameter vector

p(0) ∈ D as the initial value and set k = 0.
2: Evaluation. Calculate the relative value v∗∗n (p(k)) for

each n ∈ S by the following Bellman equation:

v∗∗n (p(k)) =r∗∗n (p(k))−R∗∗(p(k))

+
∑
n′∈S

βn,n′(p)v∗∗n′ (p(k)), ∀n ∈ S. (22)

3: Improvement. Update the new parameter as

p(k+1)
n = arg max

p̃n∈Dn

r∗∗n (p̃n) +
∑
n′∈S

βn,n′(p̃n)v
∗∗
n′ (p(k))

(23)
for n = 0, 1, . . . , c − 1. If there exists p̃n = p

(k)
n that

attains the maximum in Eq. (23), we set p(k+1)
n = p

(k)
n .

4: Stopping Rule. If p(k+1) = p(k), set pheu = p(k+1) and
stop. Otherwise, set k = k + 1 and go to step 2.
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Fig. 3. The iteration procedure of the parameters p in Algorithm 2 and
the corresponding R∗∗(p), R(p) for the case of N = 20, c = γ = 5 and
Λ = 50.

A numerical experiment of applying Algorithm 2 to find
pheu is illustrated in Fig. 3 for N = 20, c = γ = 5 and
Λ = 50. We set p(0)0 = γ/N and p

(0)
n = 0 for 1 ≤ n ≤ c− 1.

It can be seen that only 5 iterations are needed to obtain

pheu = [0.08355, 0.05597, 0.03190, 0.01294, 0.00179],

R∗∗(pheu) = 3.7531, R(pheu) = 3.7590.

On the other hand, we use “GlobalSearch” function included
in the MATLAB Global Optimization Toolbox to obtain

popt ≈ [0.08335, 0.05619, 0.03227, 0.01324, 0.00189],

R∗∗(popt) ≈ 3.7527, R(popt) ≈ 3.7594.

These results confirm the accuracy of Approximation 1. More
validations will be provided in Section VIII.
Remark 3: When γ = 1 or c = 1, it is easy to see that
rn(p) = r∗n(p) = r∗∗n (p) for any n ∈ S . Hence, we have
popt = pupp = pheu for these cases as investigated in [3]–
[5], [9], [10], [12].
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N = 10 N = 20 N = 40

c = 2
Λ = 10 0.0004352 0.0006299 0.0007098
Λ = 100 0.0004366 0.0005632 0.0006049

c = 3
Λ = 10 0.0002819 0.0004234 0.0004840
Λ = 100 0.0001143 0.0001464 0.0001580

c = 5
Λ = 10 0.0002829 0.0004273 0.0004889
Λ = 100 0.00005647 0.00007881 0.00008729

TABLE II
The analytical probability that there are more than γ + 1 ongoing

transmissions in the carrier sensing phase of a generic slot when the system
operates with pheu under γ = 5.

C. Computation Overhead Reduction

It is well known that policy iteration type algorithms for
finding optimal policy of MDP typically converge quick-
ly [24]. However, we see that for each iteration k, Algorithm 2
needs to solve a system of linear equations with |S| variables
to find πn(p

(k)) for all n ∈ S and to solve another system
of linear equations with |S| variables to find v∗∗n (p(k)) for
all n ∈ S . Hence, when |S| = N + 1 is large, Algorithm 2
involves high computation overhead at each iteration, which is
undesirable in practice. To cope with this weakness, we design
a simplification method to reduce the state space with almost
no performance penalty.

In Table II, we record the analytical probability that there are
more than γ + 1 ongoing transmissions in the carrier sensing
phase of a generic slot when the system operates with pheu,
which can be calculated as

∑N
n=γ+2 πn(pheu) using Eq. (10).

Based on these results, we have the following observation.
Observation 3. When the system operates with p whose values
are close to pheu, there is a small probability that there are
more than γ+1 ongoing transmissions in the carrier sensing
phase of a generic slot.

Inspired by Observation 3, we reduce the state space S to
{0, 1, . . . , γ+1} and redefine the state transition probabilities
as follows.

β
′

n,n′(p) = βn,n′(p), ∀n ∈ {0, 1, . . . , γ + 1},
∀n′ ∈ {0, 1, . . . , γ},

β
′

n,γ+1(p) = 1−
γ∑

n′=0

βn,n′(p), ∀n ∈ {0, 1, . . . , γ + 1}.

As the MPR capability γ is usually much smaller than the
population size N , the computation overhead of Algorithm 2
can be reduced significantly by this simplification.

Based on Observation 3, we propose the following approx-
imation.
Approximation 2. Let p̃heu denote the solution of Algorithm
2 with the reduced state space. We have pheu ≈ p̃heu.

Still for the case of N = 20, c = γ = 5 and Λ = 50, we
use Algorithm 2 to obtain

p̃heu = [0.08402, 0.05619, 0.03198, 0.01296, 0.00179],

R(p̃heu) = 3.7590.

Comparing the above with the results presented at the end
of Section VI.B, one sees p̃heu is very close to pheu and
thus there is almost no performance loss. More validations of
Approximation 2 will be provided in Section VIII.

Remark 4: Clearly, the heuristic design proposed in this section
requires a priori knowledge of the population size N . So,
when N is unknown and time-varying, it is essential to
enable each user to estimate N at runtime. Many estimation
approaches [2]–[4], [10] have been proposed for the traditional
p-persistent CSMA under SPR and γ-MPR. Here, we discuss
how to apply the estimation approach proposed in [26] to
estimate N under the generalized p-persistent CSMA when
c ≥ 2. It was shown in [26] that if 1 ≤ a1 < a2 ≤ N − 1−n,

N =
a2(a2 − a1)

a1
χn,a1 (pn)χn,a2−1(pn)

χn,a2 (pn)χn,a1−1(pn)
− a2

+ a2, (24)

where χn,a denotes the probability that a out of N − 1 − n
silent users actually begin to transmit after carrier sensing n
ongoing transmissions. Hence, if the carrier sensing capability
c ≥ n+ a2 for some a2 and n, χn,a1

(pn)χn,a2−1(pn)

χn,a2 (pn)χn,a1−1(pn)
is locally

measurable by requiring each untransmitting user to perform
carrier sensing for the entire slot. This indicates that Eq. (24)
provides a linear function for each user to estimate N . We
refer our readers to [26] for more details on the estimation
algorithm based on Eq. (24). However, a complete study of
applying this algorithm to estimate N under the generalized
p-persistent CSMA is out of the scope of this paper, and will
be an objective of our future work.

VII. EXTENSION TO GENERAL MODELS

In our study so far, we have assumed that the reception
errors due to wireless fading effect are negligible, and channel
coding is not used to protect the packets. These assumptions
allow us to provide a nice presentation in Sections IV-VI for
approximating popt. In this section, we relax these assump-
tions and investigate the throughput performance under more
general models.

We consider an “all-or-nothing” MPR model [25], in which
the receiver recovers all n signals simultaneously transmitted
in a slot with probability ϕn and recovers none of them with
probability 1− ϕn. Here, due to practical constraints, ϕn = 0
if n > γ. Clearly, the all-or-nothing MPR model contains the
γ-MPR model as a special case. In addition, we consider that
each user adopts the channel coding with the rate σ.

Let gm,h1,hm,u(p) describe the probability of having hm

other ongoing transmissions in the m-th slot of a given
transmission and having u unsuccessful slots in the first m−1
slots of this transmission, provided that there are h1 other on-
going transmissions in the first slot of this given transmission.
Obviously, g1,h1,h1,0(p) = 1. Then, for m = 2, . . . , λ, we can
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recursively obtain

gm,h1,hm,u(p) =
γ−1∑

hm−1=0

ϕhm−1+1gm−1,h1,hm−1,u(p)ξhm−1,hm(p)

+
N−1∑

hm−1=0

(1− ϕhm−1+1)gm−1,h1,hm−1,u−1(p)ξhm−1,hm(p).

(25)

Under the all-or-nothing MPR model with the coding rate
σ, we use qAoN

λ,h1
(p) to denote the success probability of a λ-

slot transmission with h1 other ongoing transmissions in its
first transmission slot. As a λ-slot transmission is successful
if and only if there are ⌊(1−σ)λ⌋ or fewer unsuccessful slots
in this transmission, we obtain

qAoN
λ,h1

(p) =
N−1∑
hλ=0

⌊(1−σ)λ⌋−1∑
u=0

gλ,h1,hλ,u(p)

+

γ−1∑
hλ=0

ϕhλ+1gλ,h1,hλ,⌊(1−σ)λ⌋(p).

(26)

Then, under this scenario, the network throughput, RAoN(p),
can be obtained as the long-term average reward of the
parameterized MDP MAoN, which is modified from M by
only replacing rn,a(p) in (3) with

rAoN
n,a (p) = aσ

∞∑
λ=1

λ

Λ

(
1− 1

Λ

)λ−1

qAoN
λ,n+a−1(p),

∀n ∈ S, ∀a ∈ An.

(27)

Although the analysis under the all-or-nothing MPR model
with channel coding does not differ from the one under γ-
MPR in any fundamental way, we find that it is infeasible
to use a similar idea to develop a low-complexity policy for
approximating optimal transmission probabilities under the
former model. Instead, the robustness of our heuristic design
to this model will be investigated in Section VIII.D.
Remark 5: For practical considerations, one would like to ana-
lyze the throughput performance under the assumption that the
users are heterogeneous in terms of traffic demand, buffer size
and carrier sensing capability. It is, in fact, possible to do so
by means of a joint state process (Q1

t , T
1
t , . . . , Q

N
t , TN

t )t∈N,
where Qi

t ∈ {0, 1, . . . , Bi} denotes the queue size of user
i in the carrier sensing phase of slot t, and T i

t ∈ {0, 1}
denotes whether user i is transmitting in the carrier sensing
phase of slot t. However, it is extremely difficult or impossible
to analyze it because of the curse of dimension. Hence,
an appropriate decoupling approximation needs to be further
studied, which is out of the scope of this paper.

VIII. RESULTS

This section includes four subsections. To validate the stud-
ies in Sections IV-VI, the first subsection compares the analyti-
cal and simulative network throughput of our heuristic design
with the upper bound, and the second subsection compares
our design against the design obtained from “GlobalSearch”
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Fig. 4. The network throughput as a function of the carrier sensing capability
for different configurations when N = 20.

included in the MATLAB Global Optimization Toolbox. In the
third subsection, the performance improvement of our design
over other CSMA-type schemes is shown via simulations. In
the fourth subsection, we examine the robustness of our study
to the non-geometric distribution of packet lengths, wireless
fading effect and employing channel coding, and also examine
the accuracy of the analysis in Section VII.

The scenarios considered in the simulations for the first
three subsections are in accordance with the descriptions in
Sections II, while the scenarios for the fourth subsection will
be introduced later. Unless otherwise specified, we set the
maximum number of allowed retransmissions to be infinitely
large, as it is more interesting to look at the accuracy of
our theoretical study in this limiting case. We shall vary the
network configuration over a wide range to investigate the
impact of system design on the throughput performance. Each
simulation result is obtained from 10 independent simulation
runs with 107 slots in each run.

A. Comparisons with Upper Bounds and Simulation Results

To improve the readability of the figures, the heuristic
design with p̃heu is not considered in this subsection, and
will be considered in the following subsections.

Fig. 4 shows the analytical and simulative network through-
put of our heuristic design with pheu as a function of the
carrier sensing capability c for γ = 2, 5, 8, Λ = 10, 100, when
N is fixed to 20. The upper bound Rupp is also shown for
comparison. The curves indicate that our analytical model is
very accurate in all the cases. As expected, for each given Λ,
both of Rupp and R(pheu) become higher as γ or c increases.
In particular, for each given pair of γ and Λ, the cases with
c > 1 significantly outperform the case with c = 1, i.e., the
optimal traditional p-persistent CSMA considered in [9], [10].
We also observe that for each given pair of γ and Λ, the
difference between Rupp and R(pheu) is minor when c is
small and gradually becomes more noticeable as c increases.
This phenomenon is due to the fact that the silent users begin
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Fig. 5. The network throughput as a function of the number of users for
different configurations when γ = 5.

new transmissions more aggressively as c increases, while
Rupp is obtained only considering the interference at the first
slot of each transmission. In addition, the curves reveal two
interesting findings for system design.

(i) An increase of average packet length leads to significant
throughput improvement only when the carrier sensing
and MPR capabilities are close. The conclusion that
an increase of average packet length certainly leads to
throughput improvement under SPR [3]–[5] can be seen
as a particular case here.

(ii) An increase of MPR capability and a decrease of carrier
sensing capability sometimes jointly cause throughput
degradation.

The reason of the above is that a decrease of carrier sensing
capability results in a negative impact on the utilization of
MPR channel, and an increase of average packet length will
aggravate this negative impact.

Fig. 5 shows the analytical and simulative network through-
put of our heuristic design with pheu as a function of the
number of users N for c = 1, 2, 5, Λ = 10, 100, when γ is
fixed to 5. Once again, we see a very good agreement between
analytical and simulation results in all the cases. Meanwhile,
the observations in Fig. 4 are confirmed again from Fig. 5,
especially that an increase of average packet length cannot
boost the throughput when the carrier sensing capability is
relatively weak. The curves further indicate that, for each given
pair of Λ and c, the upper bound is almost invariant when
N varies. This phenomenon also holds for R(pheu). So, we
see that an increase of the number of users incurs almost no
performance loss, the same as the corresponding conclusion
under SPR [3]–[5].

To show how R(pheu) is close to Rupp, Table III records
the analytical relative difference Rupp−R(pheu)

Rupp
for γ = 5, N =

20. It can be seen that the relative difference is always zero
when c = 1, at most 3.389% when c = 2, at most 6.491%
when c = 3, at most 9.274% when c = 4, and at most 10.94%
when c = 5. So, such differences are sufficient to illustrate that

Λ = 2 Λ = 5 Λ = 10 Λ = 50 Λ = 100 Λ = 500

c = 1 0 0 0 0 0 0
c = 2 3.389% 3.104% 2.753% 2.304% 2.229% 2.170%
c = 3 6.491% 5.775% 4.602% 2.671% 2.248% 1.822%
c = 4 8.618% 9.274% 8.034% 4.427% 3.221% 1.495%
c = 5 9.097% 10.94% 10.77% 9.520% 8.835% 6.453%

TABLE III
Relative difference Rupp−R(pheu)

Rupp
as a function of the average packet

length for different carrier sensing capabilities when γ = 5, N = 20.

our heuristic design has near-optimal performance when c is
small, but are insufficient when c is close to γ.

B. Comparisons with “GlobalSearch”

To further verify the near-optimal performance of our
heuristic design, Table IV presents a comparison among the
system that operates with pheu, the system that operates with
p̃heu, and the system that operates with an approximation
of popt obtained from “GlobalSearch” for c = 4, γ = 5.
The results indicate that these three systems operate with
close transmission probabilities, thereby producing almost the
same throughput performance. Table V provides the results
for c = γ = 5, which indicate the same observation. We
see that the throughput loss is below 0.01% in Table IV
and below 0.03% in Table V. As “GlobalSearch” applies
to numerically search for global solutions to a problem that
contain multiple maxima, these comparisons demonstrate the
near-optimal performance of our heuristic design when c is
close to γ. Moreover, these comparisons validate the accuracy
of Approximations 1 and 2.

It should be noted that applying “GlobalSearch” to R(p)
involves quite high computation complexity especially when
c or N is large. So, it is prohibitive for a wireless device to
use “GlobalSearch” to approximate popt in real time.

C. Comparisons with Other CSMA-Type Schemes

To show the performance advantage of our design, we con-
sider the following three asynchronous CSMA-type schemes
as benchmarks.

(i) XL-CSMA [12]: each user adopts the transmission prob-
abilities pn = max

(
0, (γ∗ − n)/(N − n)

)
for n =

0, 1, . . . , γ − 1, where the tuning parameter γ∗ is an
integer not larger than γ.

(ii) Threshold-based CSMA/CA [14]: each user maintains a
backoff counter with an initialized value from the range
[0,W −1], and is required to decrease its backoff counter
as soon as the number of sensed ongoing transmissions
is below max(1, γ − 1).

(iii) Threshold-based CSMA/CA [15]: each user maintains a
backoff counter with an initialized value from the range
[0,W − 1], and is required to freeze its backoff counter
once the number of ongoing transmissions exceeds γ−1
and resume decrementing its backoff counter only when
the channel becomes idle again.
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p0 p1 p2 p3 R(p)

N = 10
Λ = 10

“GlobalSearch′′ 0.24711 0.18144 0.11517 0.05300 3.2760
pheu 0.24744 0.18064 0.11373 0.05156 3.2757
p̃heu 0.24810 0.18099 0.11389 0.05160 3.2757

N = 10
Λ = 100

“GlobalSearch′′ 0.16468 0.11426 0.06714 0.02778 3.7879
pheu 0.16611 0.11475 0.06709 0.02757 3.7879
p̃heu 0.16666 0.11503 0.06721 0.02760 3.7879

N = 20
Λ = 10

“GlobalSearch′′ 0.11219 0.07776 0.04637 0.01995 3.1917
pheu 0.11221 0.07730 0.04570 0.01935 3.1914
p̃heu 0.11271 0.07753 0.04578 0.01937 3.1914

N = 20
Λ = 100

“GlobalSearch′′ 0.07236 0.04762 0.02651 0.01033 3.7593
pheu 0.07270 0.04778 0.02646 0.01024 3.7593
p̃heu 0.07306 0.04795 0.02653 0.01026 3.7593

TABLE IV
A performance comparison among the system operates with pheu, the system operates with p̃heu and the system operates with an approximation of popt

obtained from “GlobalSearch” for c = 4, γ = 5.

p0 p1 p2 p3 p4 R(p)

N = 10
Λ = 10

“GlobalSearch′′ 0.24848 0.18278 0.11643 0.05408 0.00862 3.3092
pheu 0.24832 0.18151 0.11459 0.05236 0.00790 3.3085
p̃heu 0.24899 0.18186 0.11475 0.05240 0.00790 3.3086

N = 10
Λ = 100

“GlobalSearch′′ 0.16778 0.11659 0.06929 0.02935 0.00447 3.9959
pheu 0.16761 0.11634 0.06863 0.02876 0.00427 3.9955
p̃heu 0.16819 0.11664 0.06875 0.02879 0.00427 3.9955

N = 20
Λ = 10

“GlobalSearch′′ 0.11283 0.07834 0.04687 0.02036 0.00304 3.2220
pheu 0.11260 0.07766 0.04604 0.01965 0.00277 3.2213
p̃heu 0.11311 0.07790 0.04613 0.01967 0.00277 3.2213

N = 20
Λ = 100

“GlobalSearch′′ 0.07341 0.04862 0.02738 0.01094 0.00156 3.9557
pheu 0.07339 0.04846 0.02709 0.01071 0.00148 3.9553
p̃heu 0.07377 0.04864 0.02716 0.01072 0.00148 3.9553

TABLE V
A performance comparison among the system operates with pheu, the system operates with p̃heu and the system operates with an approximation of popt

obtained from “GlobalSearch” for c = γ = 5.

In the comparisons, we use simulations to search for the
optimal settings of the above schemes. For practical consider-
ations, the maximum number of allowed retransmissions is set
to 4. To improve the readability of the figures, only simulation
results are reported in this subsection.

In Fig. 6 (a), we compare our design with optimal XL-
CSMA [12] for N = 20 and c = γ. Again, we see that pheu

and p̃heu produce almost the same throughput. On the other
hand, we observe that our design significantly outperforms
optimal XL-CSMA in all the cases especially when Λ is
large: 11.4%–40.7% improvement when Λ = 10 and 26.3%–
82.2% improvement when Λ = 100. This phenomenon can
be attributed to the fact that the setting of transmission
probabilities in XL-CSMA is restricted to a special form and
does not consider the impact of packet length.

Then, we convert our design to a CSMA/CA scheme with
c backoff processes as introduced in Section III, and compare
it with the threshold-based CSMA/CA schemes [14], [15] in
Fig. 6 (b) for N = 20 and c = γ. As expected, when γ = 1,
these three schemes have the same performance as they all
reduce to the traditional CSMA/CA. When γ > 1, we find
that our design outperforms the scheme in [14]: 7.44%–26.3%
improvement for Λ = 10 and 3.03%–57.1% improvement for
Λ = 100. This happens because the scheme in [14] can be
converted to the generalized p-persistent CSMA with p0 =

p1 = · · · = pγ−2 > 0, pγ−1 = 0, which has an additional
constraint compared with our design. Here, the scheme in [15]
obtains the lowest throughput performance.

D. Robustness of Our design
1) Robustness to Non-Geometric Distribution of Packet

Lengths: In our study so far, we have assumed that the
packet lengths follow the geometric distribution, which is
reasonable when different types of services are considered.
This assumption also allows us to use the Markov systems to
model the behavior of generalized p-persistent CSMA. Here,
we remove this assumption and examine the robustness of
our design to constant-length packets. We still consider the
schemes in [12], [14], [15] as benchmarks and use simulations
to search for their optimal settings.

Fig. 7 (a) shows that even under constant-length packets,
our design still outperforms the optimal XL-CSMA [12] in
all the cases: 5.01%–21.7% improvement when Λ = 10 and
19.0%–49.5% improvement when Λ = 100. However, the
performance gap is found smaller than that in Fig. 6 (a). This
phenomenon can be attributed to the fact that our design is
based on the geometrically distributed packet lengths, and thus
may not be near-optimal under constant packet lengths.

Similar results are obtained from Fig. 7 (b), which plots
the throughput comparison between our design and threshold-
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Fig. 6. A comparison with XL-CSMA [12] and other asynchronous CSMA/CA [14], [15] for N = 20 and c = γ. The maximum number of allowed
retransmissions is set to 4.
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Fig. 7. A comparison with XL-CSMA [12] and other asynchronous CSMA/CA [14], [15] for N = 20 and c = γ. The constant packet lengths and
geometrically distributed packet lengths are both considered in the simulation. The maximum number of allowed retransmissions is set to 4.

based CSMA/CA schemes [14], [15] under constant packet
lengths. We see that when γ > 1, our design outperforms the
scheme in [14]: 7.75%–14.2% improvement for Λ = 10 and
3.23%–41.1% improvement for Λ = 100. Meanwhile, we see
that when γ > 1, our design outperforms the scheme in [15]:
6.97%–73.3% improvement for Λ = 10 and 1.05%–17.6%
improvement for Λ = 100. The performance gap is also found
smaller than that in Fig. 6 (b).

On the other hand, we see from Fig. 7 that the throughput
performance of our design under constant packet lengths is
slightly better than that under geometrically distributed packet
lengths. The improvement is 3.74%–7.84% for Λ = 10 and
1.87%–3.57% for Λ = 100. This phenomenon indicates again
that our design is effective for constant packet lengths.

2) Robustness to Wireless Fading and Channel Coding:
The assumption of negligible wireless fading effect and not
using channel coding allows us to provide a nice presentation

for approximating popt. Here, we examine the robustness
of our design to the presence of them. To this purpose,
we consider successive compute-and-forward (SCF), a signal-
processing technique for all-or-nothing MPR, which combines
ideas from classical successive interference cancellation and
compute-and-forward. We refer our readers to [25] for more
details on SCF. With a particular focus on the symmetric
rates and complex-valued channel models, some values of ϕn

under independent Rayleigh-fading environment are listed in
Table VI.

Fig. 8 shows the analytical and simulative network through-
put of our heuristic design with p̃heu as a function of SNR
for the coding rate σ = 4/5, 16/17, 1, when N is fixed to
20. The results for the designs obtained from “GlobalSearch”
are also shown for comparison. We see a discrepancy between
analytical and simulative results for the low SNR values and
high coding rates, where the analysis is more optimistic. This
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SNR (dB) ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

5 0.9839 0.9663 0.9460 0.9176 0.8757
6 0.9926 0.9840 0.9756 0.9644 0.9493
7 0.9966 0.9928 0.9890 0.9846 0.9797
8 0.9984 0.9971 0.9953 0.9936 0.9914
9 0.9993 0.9986 0.9982 0.9973 0.9964
10 0.9997 0.9994 0.9993 0.9988 0.9985

TABLE VI
The values of ϕn for SCF-based all-or-nothing MPR under independent

Rayleigh-fading environment when the receiver is equipped with 4 antennas,
the symmetric message rate is equal to 2, and γ = 5.

5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

3.5

Fig. 8. The network throughput as a function of SNR for different
coding rates, when N is fixed to 20. The maximum number of allowed
retransmissions is set to 4.

discrepancy is due to the fact that the packets need more
retransmissions in these cases especially when the packets
have longer lengths, and hence the packet length distribu-
tion cannot be considered geometric. We also note that the
throughput performance under p̃heu is still close to that under
“GlobalSearch”, but the gap is noticeable when a low coding
rate is used. This is because that a lower coding rate allows
more unsuccessful slots in a successfully received packet,
which makes the heuristic of our design more inapplicable.
Furthermore, we observe that, as expected, a lower coding rate
is helpful to improve the throughput as the SNR decreases.

In sum, although our design becomes slightly inapplicable
in the presence of wireless fading and channel coding, it is
still able to offer acceptable throughput performance.

IX. CONCLUSIONS

To efficiently utilize the γ-MPR channel, a generalization
of traditional p-persistent CSMA and its conversion to CS-
MA/CA have been proposed. In such CSMA, each user is
allowed to adopt different transmission probabilities according
to different carrier sensing outcomes. Under the assumption
that the packet lengths follow the geometric distribution, a
parameterized MDP has been developed to characterize the
behavior of such CSMA, and based on a modified version
of this MDP a heuristic design of transmission probabilities

with low computation complexity has been proposed. Simu-
lation results have shown that our approach is near-optimal
for achieving maximum throughput and is able to provide
considerable throughput improvement over other CSMA-type
schemes. Simulation results also have shown that our approach
is robust to constant packet lengths, wireless fading effect and
employing channel coding.

As a by-product of our study, we identify some interesting
findings for system design. First, an increase of average packet
length would lead to significant throughput improvement only
when the carrier sensing and MPR capabilities are close. This
helps explain why the traditional p-persistent CSMA (i.e.,
c = 1) is not always superior to slotted-ALOHA under γ-
MPR, which was observed in [10]. Second, an increase of
carrier sensing capability and a decrease of MPR capability
may jointly lead to throughput improvement. This is useful to
find a better tradeoff between the throughput performance and
hardware cost, which is also our ongoing work.
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