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Abstract—This paper focuses on random access in uplink sys-
tems under deadline-constrained periodic traffic, which is typical
for many real-time Internet of Things scenarios. To achieve very
low overhead in random access, we consider dynamic slotted
ALOHA without observation where each active node adopts time-
dependent but observation-independent transmission probabili-
ties. Built on the theory of blind Markov decision processes, we
develop an analytical framework of such dynamic access with a
simplified version of information states, which leads to optimal
time-dependent transmission probabilities. Further, based on this
framework, we derive simple closed-form expressions for optimal
time-dependent transmission probabilities and maximum long-
run system throughput, which makes our scheme also enjoy very
low complexity. Numerical results show that the proposed scheme
outperforms other random access schemes without observation
over a wide range of network configurations.

Index Terms—Internet of Things, delivery deadline, random
access, blind Markov decision processes

I. INTRODUCTION

To enable timely monitoring and control, real-time Internet
of Things (IoT) systems that impose a strict deadline on packet
delivery have become prevalent in industry, environment, and
transportation domains [1], [2]. Out of several such systems,
this paper focuses on uplink IoT systems under deadline-
constrained periodic traffic, which are typical for automation
control loops and process control use cases [3]. For example,
with a predefined delivery deadline, pressure sensors period-
ically send values to a machine PLC, so that the PLC can
continuously monitor the status and take necessary actions.

Usually, an uplink IoT system involves a massive number
of battery-powered, low-cost, and uncoordinated sensor nodes
sending small packets to an access point (AP). So, it is
essential to develop a low-complexity and low-overhead ran-
dom access scheme to achieve excellent throughput/reliability
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performance under deadline-constrained periodic traffic. The
design philosophy is expected to be different from what has
been commonly used under deadline-unconstrained traffic.

Many recent studies have been devoted to this design issue.
Under p-fixed slotted ALOHA where each active node adopts
a fixed transmission probability p, Deng et al. [4] investigat-
ed the throughput performance for any p using a recursive
algorithm, but the fixed p inevitably restricts the maximum
achievable throughput performance. Under p-dynamic slotted
ALOHA where each active node adopts time-dependent p,
Zhao et al. [5] proposed to double or halve p according
to the previous AP feedback, and analyzed the reliability
performance relying on an absorbing Markov chain. However,
this scheme was designed without any principle of optimality.
Still under p-dynamic slotted ALOHA, Bae et al. [6] proposed
to change p for maximizing the instantaneous throughput
relying on a complete knowledge of the current number of
active nodes, which is, however, unrealistic. This scheme
was designed without a principle of dynamic programming
optimality. To overcome the weakness in [4]–[6], built on
the theory of partially observable Markov decision processes
(POMDPs), Zhang et al. [7] proposed two dynamic schemes
for maximizing the long-run throughput when each node only
has an incomplete knowledge of the current number of active
nodes. A common characteristic of [4]–[7] is that they all
require instantaneous AP feedback to notify the transmission
outcome and update the knowledge of the number of current
active nodes, which introduces excessive overhead for small
packets and resource-constrained nodes [8], [9]. To eliminate
such overhead, another type of random access, called K-
repetition [10], has been suggested in 3GPP R16. It requires
each active node to randomly and uniformly choose K slots for
transmissions before deadline without the need of observing
the AP feedback and channel status (idle/busy). Gong et
al. [11] focused on a similar system model and considered
dynamic slotted ALOHA where each active node adopts both
time- and observation-dependent transmission probabilities.
However, the study therein requires each active node to
constantly sense the channel status and maintain an activity
belief, which may be impractical for low-cost nodes. Liu et
al. [12] focused on centralized scheduling under Bernoulli
traffic and optimized the age of information based on a
POMDP framework. However, the centralized manner makes
the technical difficulty in [12] quite different from that in
random access [4]–[7], [10], [11].

Motivated by [4]–[7], [10], [11], this paper aims to design
a p-dynamic slotted ALOHA scheme without observation.
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Different from [4]–[6], [10], the designed scheme accounts
for the dynamic programming optimality. Different from [7],
[11], it has closed-form expressions and thus achieves very low
complexity. Different from [4]–[7], it needs no observations
and thus achieves very low overhead. In this scheme, each ac-
tive node adopts time-dependent but observation-independent
transmission probabilities. Our contributions are as follows.

(i) In Section III, based on the theory of blind Markov
decision processes (MDPs) [13], we develop an analyt-
ical framework for p-dynamic slotted ALOHA without
observation, which leads to optimal time-dependent trans-
mission probabilities. Moreover, we prove a simplified
version of information states to simplify this framework,
which serves as a basis for subsequent derivations.

(ii) In Section IV, we derive closed-form expressions for op-
timal time-dependent transmission probabilities obtained
from this framework, which makes our scheme enjoy
very low complexity, thus being well suited for resource-
constrained nodes. The explicit results help to easily
understand how to optimally utilize channel and time
resources under different urgencies.

(iii) In Section V, we present numerical results to evaluate
the performance advantage of the proposed scheme and
validate our theoretical findings.

To the best of our knowledge, this paper is the first to use the
theory of blind MDPs in deadline-constrained random access.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We assume a wireless network consisting of a finite number,
N ≥ 2 of nodes which contend to transmit packets to a
common AP. All the nodes are inside the AP’s reception
range and can interfere with each other’s transmissions. The
global time axis is structured frame-by-frame. Each frame is
partitioned into D ≥ 1 equal-duration time slots indexed by
t ∈ T , {1, 2, . . . , D}. The nodes are aware of the slot
boundaries. With probability λ ∈ (0, 1], a single-slot packet
is generated by each node independently at the start of each
frame. A packet generated in a frame has a strict delivery
deadline D slots, i.e., it will be dropped when this frame
finishes. We assume that a packet is successfully received
by the AP with probability σ ∈ (0, 1] if and only if its
transmission does not overlap with other transmissions.

As in [14], [15], we assume that each packet is not
acknowledged and will not be retransmitted based on the
following considerations. First, waiting for the AP feedback
introduces additional latency, which is undesirable for real-
time services. Second, feedback reception and retransmissions
are both power-consuming, which are costly for resource-
constrained nodes. Third, built-in redundancy in sensor cov-
erage is usually applied in IoT systems to ensure reliability
instead of retransmissions [16]. For the sake of low overhead,
we also assume that all the nodes always perform no channel
observation.

At the beginning of slot t in an arbitrary frame, we consider
that a node is active if a packet is generated by this node at
the start of this frame and has not been sent yet, and each
active node sends its packet with probability pt ∈ [0, 1]. Let
nt ∈ N , {0, 1, . . . , N} represent the number of active nodes.

Based on the above assumptions, a p-dynamic slotted ALO-
HA scheme without observation can be defined by a sequence
of transmission probabilities π , (p1, p2, . . . , pD) ∈ [0, 1]D.
We want to find an optimal scheme π∗ , (p∗1, p

∗
2, . . . , p

∗
D)

that maximizes the long-run system throughput, i.e.,

Θπ , Eπ[σntpt(1− pt)
nt−1]/D,

π∗ ∈ argmaxπ∈[0,1]DΘ
π.

Denote by B(M, q) a binomial distribution with parameters
M and q where the k-th (0 ≤ k ≤ M ) component is equal to(
M
k

)
qk(1− q)M−k.

Two practical scenarios can be found as follows.

• In a periodic event-triggered control application [17], a
fixed number of sensors associated with a process are
deployed to periodically measure plant outputs and send
their measurements to a controller when pre-designed
conditions are met.

• In a group-based event detection application [18], a fixed
number of nodes are deployed at deterministic locations
to periodically monitor the same area of interest and send
their reports to a controller for detecting physical events.

III. BLIND MDP FRAMEWORK

We formulate a blind MDP based on the definitions below.

(i) States, actions: We view nt as the state at slot t, and
view pt as the action at slot t.

(ii) State Transition Function: The state transition function
Tt(n

′, n, pt) is defined to be the probability of starting in
nt = n and ending in nt+1 = n′ under the transmission
probability pt. So, for each n, n′ ∈ N and each pt ∈
[0, 1], we have

Tt(n
′, n, pt) =

{(
n

n−n′

)
pn−n′

t (1− pt)
n′
, if n′ ≤ n,

0, otherwise.
(1)

(iii) Information State: The information state at slot t is
denoted by It , [It(0), It(1), . . . , It(N)], where It(n)
is the conditional probability (given all past transmission
probabilities) that nt = n. For each t ∈ T \ {D}, given
It and pt, It+1 can be computed by

It+1(n
′) =

∑
n∈N

Tt(n
′, n, pt)It(n), ∀n′ ∈ N . (2)

Further, we prove the following simplified version of
It that is equivalent to the original one. The proof is
relegated to Appendix A.
Lemma 1. For t ∈ T , It = B(N,αt) where

αt =

{
λ, if t = 1,

αt−1(1− pt−1), otherwise.
(3)

Let At represent the set consisting of all possible values
of αt.
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(iv) Reward Function: The reward Rt(αt, pt) is defined to be
the mean number of packets successfully received by the
AP at slot t under It = B(N,αt) and pt. So,

Rt(αt, pt) =
N∑

n=1

It(n)σnpt(1− pt)
n−1 (4)

(∗)
= σNαtpt(1− αtpt)

N−1, (5)

where the proof of (∗) is relegated to Appendix B.
Let Jπ represent the expected total reward obtained at slots

1, 2, . . . , D under the policy π, i.e.,

Jπ , Eπ

[ D∑
t=1

Rt(αt, pt)

]
= ΘπD.

Let U∗
t (αt) represent the maximum total expected reward

obtained at slots t, t + 1, . . . , D when It = B(N,αt). Ob-
viously, U∗

1 (α1) = Θπ∗
D. Then, we arrive at the following

Bellman equation:

U∗
D(αD) = max

pD∈[0,1]
RD(αD, pD), ∀αD ∈ AD,

U∗
t (αt) = max

pt∈[0,1]
Rt(αt, pt) + U∗

t+1(αt − αtpt),

∀αt ∈ At, ∀t ∈ T \ {D}.

(6)

Solving (6) formally leads to π∗ and Θπ∗
. However, getting

π∗ is computationally heavy as ∪t∈T At and the action space
[0, 1] are both infinite.

IV. CLOSED-FORM OPTIMAL SCHEME

In this section, to reduce the computational complexity of
solving π∗, we derive simple closed-form expressions for π∗.
A closed-form expression for Θπ∗

is also provided.
First, we provide key properties of Rt(αt, pt) and U∗

t (αt)
in Lemma 2. Its proof is relegated to Appendix C.

Lemma 2. For t ∈ T , if αt > 0, the followings hold.
(i) When Nαt ≥ 1, Rt(αt, pt) achieves its maximum σ(1−

1
N )N−1 only at pt = 1

Nαt
,

(ii) When 0 < Nαt < 1, Rt(αt, pt) achieves its maximum
σNαt(1 − αt)

N−1 only at pt = 1, and the maximum
value is strictly smaller than σ(1− 1

N )N−1, and
(iii) U∗

t (αt) ≤ (D − t+ 1)σ(1− 1
N )N−1.

Based on Lemma 2, we derive closed-form p∗t and U∗
t (αt)

when αt > 0. Its proof is relegated to Appendix D.

Lemma 3. For t ∈ T ,
(i) if Nαt ≥ D − t + 1, then p∗t = 1

Nαt
and U∗

t (αt) =

(D − t+ 1)σ(1− 1
N )N−1, and

(ii) if 0 < Nαt < D−t+1, then p∗t = 1
D−t+1 and U∗

t (αt) =

σNαt(1− αt

D−t+1 )
N−1.

We are ready for deriving closed-form π∗ and Θπ∗
.

Theorem 4. For N ≥ 2, λ ∈ (0, 1], and D ≥ 1, we have

p∗t =

{
1

Nλ−t+1 , if Nλ ≥ D,
1

D−t+1 , otherwise,

for each t ∈ T , and

Θπ∗
=

{
σ(1− 1

N )N−1, if Nλ ≥ D,

σNλ
D (1− λ

D )N−1, otherwise.

Proof. For the case Nλ ≥ D, by Lemma 3 (i), we have
U∗
1 (λ) = Dσ(1 − 1

N )N−1. So, we obtain Θπ∗
=

U∗
1 (λ)
D =

σ(1− 1
N )N−1. When t = 1, by Lemma 1, we know α1 = λ.

As Nλ ≥ D, by Lemma 3 (i), we have p∗1 = 1
Nλ . When t = 2,

by Lemma 1, we know α2 = λ− 1
N . As N(λ− 1

N ) ≥ D−1, by
Lemma 3 (i), we further have p∗2 = 1

Nλ−1 . For t = 3, 4, . . . , D,
we can obtain the optimal scheme for this case by repeating
the aforementioned reasoning iteratively.

For the case Nλ < D, by Lemma 3 (ii), we know U∗
1 (λ) =

σNλ(1 − λ
D )N−1. So, we obtain Θπ∗

= σNλ
D (1 − λ

D )N−1.
For each t ∈ T , by Lemma 3 (ii), we have p∗t = 1

D−t+1 .

Remark 1: If Nλ ≥ D, each active node will adopt p∗t
maximizing the instantaneous throughput. Otherwise, they will
adopt p∗t transmitting all the backlogged packets uniformly
in D slots. Note that the latter case is equivalent to 1-
repetition [10].
Remark 2: The analytical framework developed in this paper
is based on the model-based blind MDP formulation. If the
number of nodes is unknown or varies with time, model-free
algorithms in reinforcement learning can be utilized as they do
not require learning a model of the environment [19]. However,
such algorithms often exhibit high computational complexity
and slow convergence due to the need for a large number of
interactions with the environment, which may pose challenges
for low-cost nodes.

V. NUMERICAL EVALUATION

In this section, we compare the proposed scheme π∗, the
myopic scheme πmyo [6], the optimal static scheme πsta [4],
and 1-repetition [10]. Here, πsta ∈ argmaxp∈[0,1] Θ

π s.t. pt =
p, ∀t ∈ T . We set up the numerical experiments according to
the system model specified in Section II.
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Fig. 1: The system throughput (packets/slot) versus the packet
arrival rate λ when N = 200, D = 10, σ = 0.9.

Figs. 1–2 show the throughput performance as functions
of the packet arrival rate λ and the delivery deadline D, re-
spectively. We observe that π∗ significantly outperforms πmyo

with 9.51%–64.66% improvement when Nλ < D, and attains
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an equivalent performance as πmyo when Nλ ≥ D. We also
observe that π∗ significantly outperforms πsta with 1.79%–
19.75% improvement. As expected, since π∗ includes πmyo

and πsta as particular cases, π∗ provides an upper bound on
the throughput performance of them. Meanwhile, we observe
that π∗ attains an equivalent performance as 1-repetition when
Nλ ≤ D, and outperforms 1-repetition with 0.48%–36.26%
improvement when Nλ > D. These comparisons confirm
Lemma 3 and Theorem 4. We note from Figs. 1–2 that the
throughput advantage of π∗ over πmyo becomes noticeable
as λ decreases or D increases. This is because the waste
of time resources becomes severer in πmyo. We also note
that the throughput advantage over πsta becomes noticeable
as λ decreases or D increases. This is because dynamic
access plays a stronger role in improving the throughput under
less delivery urgency or less contention intensity. We further
note that the throughput advantage over 1-repetition becomes
noticeable as λ increases or D decreases. This is because the
waste of channel resources becomes severer in 1-repetition.
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Fig. 2: The system throughput (packets/slot) versus the deliv-
ery deadline D when N = 200, λ = 0.05, σ = 0.9.

The above comparisons indicate that π∗ always performs
best, which can be attributed to the benefit of π∗ combining
the advantages of other schemes, that is, fully utilizing the
channel resources when Nλ ≥ D as in πmyo, and fully
utilizing the time resources when Nλ ≤ D as in 1-repetition.
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Fig. 3: The packet loss rate versus the packet arrival rate λ
when N = 200, D = 10, σ = 0.9.

Fig. 3 shows the packet loss rate versus the packet arrival

rate λ. We observe that π∗ outperforms πmyo with 5.51%–
47.45% reduction when Nλ < D, 1-repetition with 0.20%–
2.58% reduction when Nλ > D, and πsta with 1.09%–19.90%
reduction in all the cases. We also observe that π∗ attains an
equivalent performance as πmyo when Nλ ≥ D and as 1-
repetition when Nλ ≤ D. Once again, these results indicate
that π∗ always performs best, i.e., it provides a lower bound
on the packet loss rate. As λ increases, all the four schemes
suffer high packet loss rates due to lack of retransmissions
and observations. Nevertheless, this issue can be mitigated
by employing the built-in redundancy. For example, in group-
based detection [16], an event is considered to be detected as
soon as a portion of users have successfully sent their reports
for this event.

VI. CONCLUSION

To provide very low-overhead random access for deadline-
constrained periodic traffic, this paper considered p-dynamic
slotted ALOHA without observation where each active node
adopts time-dependent but observation-independent transmis-
sion probabilities. To also achieve very low complexity, based
on a blind MDP framework, simple closed-form expressions
for optimal time-dependent transmission probabilities have
been derived. Our future work would focus on the dynam-
ic optimization of more advanced random access schemes,
such as non-orthogonal-multiple-access-based grant-free ac-
cess [20] and successive-interference-cancellation-based grant-
free access [21].

APPENDIX A
PROOF OF LEMMA 1

We shall prove this result by induction on t from t = 1 up
to D. First, given N and λ, we have I1 = B(N,λ), forming
the induction basis. Next, when t ∈ T \ {1}, assume It−1 =
B(N,αt−1). For the case pt = 1, we have It = B(N, 0). For
the case pt < 1, by (1) and (2), for each n′ ∈ N , we have

It(n
′) =

N∑
n=n′

(
n

n− n′

)
pn−n′

t−1 (1− pt−1)
n′
(
N

n

)
αn
t−1(1− αt−1)

N−n,

=

(
N

n′

)
(αt−1 − αt−1pt−1)

n′
(1− αt−1 + αt−1pt−1)

N−n′

×
N−n′∑
m=0

(
N − n′

m

)
(

αt−1pt−1

1− αt−1 + αt−1pt−1
)m

× (1− αt−1pt−1

1− αt−1 + αt−1pt−1
)N−n′−m

=

(
N

n′

)
(αt−1 − αt−1pt−1)

n′
(1− αt−1 + αt−1pt−1)

N−n′
.

So, we have It = B(N,αt) where αt = αt−1(1− pt−1).

APPENDIX B
PROOF OF (∗) IN (5)

By plugging the expression of It(n) into (4) yields

Rt(αt, pt) =
N∑

n=1

(
N

n

)
αn
t (1− αt)

N−nσnpt(1− pt)
n−1.
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So, it is easy to see that Rt(αt, pt) = 0 when αtpt = 1. For
the case αtpt < 1, we further have

Rt(αt, pt) = σNαtpt(1− αtpt)
N−1

N−1∑
m=0

(
N − 1

m

)
×
(αt − αtpt
1− αtpt

)m(
1− αt − αtpt

1− αtpt

)N−1−m

= σNαtpt(1− αtpt)
N−1.

APPENDIX C
PROOF OF LEMMA 2

When αt is fixed, Rt(αt, pt) can be viewed as a function
of one variable pt. By (5), define

f(x) , σNαtx(1− αtx)
N−1, x ∈ [0,+∞). (7)

Differentiating f(x) with respect to x yields that

d
dx

f(x) = σNαt(1−Nαtx)(1− αtx)
N−2. (8)

From (8), for x ∈ [0, 1], we know f(x) achieves its maximum
σ(1− 1

N )N−1 only at x = 1
Nαt

if Nαt ≥ 1, and achieves its
maximum σNαt(1−αt)

N−1 only at x = 1 otherwise. Further,
when 0 < Nαt < 1, since f(x) is continuous on [0, 1

Nαt
] and

d
dxf(x) > 0 for x ∈ (0, 1

Nαt
), we obtain that f(x) is strictly

increasing on [0, 1
Nαt

], implying f(1) < f( 1
Nαt

) = σ(1 −
1
N )N−1. The proof of Lemma 2 (i), (ii) is thus completed.

We shall prove Lemma 2 (iii) by induction on t from t = D
down to 1. When t = D, by (6) and Lemma 2 (i), (ii), we
have U∗

D(αD) = maxpD∈[0,1] RD(αD, pD) ≤ σ(1 − 1
N )N−1

for αD ∈ AD \ {0}, forming the induction basis. Next, when
t ∈ T \ {D}, assume U∗

t+1(αt+1) ≤ (D − t)σ(1 − 1
N )N−1.

By Lemma 1, Lemma 2 (i), (ii), and (6), we have

U∗
t (αt) = max

pt∈[0,1]
Rt(αt, pt) + U∗

t+1(αt − αtpt)

≤ σ
(
1− 1

N

)N−1

+ (D − t)σ
(
1− 1

N

)N−1

= (D − t+ 1)σ
(
1− 1

N

)N−1

,

for αt ∈ At \ {0}. This completes the proof.

APPENDIX D
PROOF OF LEMMA 3

The following notation and definition are useful throughout
this proof. Let U⋄

t (αt, pt) represent the expected total reward
obtained at slots t, t + 1, . . . , D under It = B(N,αt) when
each active node adopts pt and (p∗t+1, . . . , p

∗
D). So, we have

U⋄
D(αt, pt) = RD(αt, pt), ∀αt ∈ AD,

U⋄
t (αt, pt) = Rt(αt, pt) + U∗

t+1(αt − αtpt),

∀αt ∈ At,∀t ∈ T \ {D}.
(9)

We proceed by induction on t from t = D down to 1.
First, consider t = D. If NαD ≥ 1, it follows from (6) and
Lemma 2 (i) that p∗D = 1

NαD
and U∗

D(αD) = σ(1− 1
N )N−1.

If 0 < NαD < 1, it follows from (6) and Lemma 2 (ii) that
p∗D = 1 and U∗

D(αD) = σNαD(1−αD)N−1. So, the assertion
holds for t = D.

Assume the assertion is true for t+ 1 with t ≤ D− 1, i.e.,
(i) if Nαt+1 ≥ D−t, then p∗t+1 = 1

Nαt+1
and U∗

t+1(αt+1) =

(D − t)σ(1− 1
N )N−1; and

(ii) if 0 < Nαt+1 < D − t, then p∗t+1 = 1
D−t and

U∗
t+1(αt+1) = σNαt+1(1− αt+1

D−t )
N−1.

First, consider Nαt ≥ D − t + 1. In this case, Nαt ≥ 1.
By Lemma 2 (i), Rt(αt, pt) ≤ σ(1− 1

N )N−1 and the equality
occurs only when pt =

1
Nαt

. When pt is chosen to be 1
Nαt

,
by (3), Nαt+1 = Nαt − Nαtpt ≥ D − t. By (9) and the
hypothesis (i), we have U⋄

t (αt,
1

Nαt
) = σ(1− 1

N )N−1+(D−
t)σ(1− 1

N )N−1 = (D− t+1)σ(1− 1
N )N−1, which attains the

optimal value U∗
t (αt) by Lemma 2 (iii). Therefore, p∗t = 1

Nαt
,

and the result follows.
Now, consider 0 < Nαt < D − t + 1 that can be divided

into the following two subcases.
Subcase 1: 0 < Nαt < D − t. In this subcase, by (3),

Nαt+1 = Nαt − Nαtpt < D − t. It follows from (5), (9),
and the hypothesis (ii) that

U⋄
t (αt, pt) = Rt(αt, pt) + U∗

t+1(αt − αtpt)

= σNαtpt(1− αtpt)
N−1

+ σN(αt − αtpt)
(
1− αt − αtpt

D − t

)N−1

. (10)

By viewing (10) as a function of one variable pt, its derivative
is given by

d
dpt

U⋄
t (αt, pt) = σNαt(1−Nαtpt)(1− αtpt)

N−2

− σNαt

(
1− Nαt(1− pt)

D − t

)(
1− αt(1− pt)

D − t

)N−2

. (11)

Notice that U⋄
t (αt, pt) is continuous on pt ∈ [0, 1]. Since D−

t ≥ 1, one has pt < 1−pt

D−t if pt < 1
D−t+1 and pt > 1−pt

D−t if
1

D−t+1 < pt. It follows from (11) that U⋄
t (αt, pt) is strictly

increasing on pt ∈ [0, 1
D−t+1 ] and strictly decreasing on pt ∈

[ 1
D−t+1 , 1]. Hence, we have p∗t = 1

D−t+1 , and thus U∗
t (αt) =

σNαt(1− αt

D−t+1 )
N−1 by plugging pt =

1
D−t+1 into (10).

Subcase 2: D − t ≤ Nαt < D − t+ 1. We consider two
situations according to the possible values of pt.
Subcase 2.1: pt > 1− D−t

Nαt
. Since pt > 1− D−t

Nαt
implies that

Nαt −Nαtpt < D − t, we have Nαt+1 < D − t by (3). It
follows from (5), (9), and the hypothesis (ii) that

U⋄
t (αt, pt) = σNαtpt(1− αtpt)

N−1

+ σN(αt − αtpt)
(
1− αt − αtpt

D − t

)N−1

.

Note that 1 − D−t
Nαt

< 1
D−t+1 due to the assumption Nαt <

D − t+ 1. By the same argument in Subcase 1, we have

U⋄
t (αt, pt) ≤ σNαt

(
1− αt

D − t+ 1

)N−1

, (12)

and the equality holds when pt =
1

D−t+1 .
Subcase 2.2: pt ≤ 1− D−t

Nαt
. Since pt ≤ 1− D−t

Nαt
implies that

Nαt −Nαtpt ≥ D − t, we have Nαt+1 ≥ D − t by (3). It
follows from (5), (9), and the hypothesis (i) that

U⋄
t (αt, pt) = Rt(αt, pt) + U∗

t+1(αt − αtpt)

= σNαtpt(1− αtpt)
N−1 + (D − t)σ

(
1− 1

N

)N−1

.
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It suffices to maximize σNαtpt(1 − αtpt)
N−1 to compute

U∗
t (αt). Recall the function f(x) given in (7), which is

defined for the maximization of σNαtpt(1−αtpt)
N−1. By the

argument in the proof of Lemma 2, f(x) is strictly increasing
on [0, 1

Nαt
]. Since 1− D−t

Nαt
< 1

Nαt
due to the assumption that

Nαt < D − t+ 1, we have

U⋄
t (αt, pt) ≤ U⋄

t

(
αt, 1−

D − t

Nαt

)
= σNαt

(
1− D − t

Nαt

)(
1− αt

(
1− D − t

Nαt

))N−1

+ (D − t)σ
(
1− 1

N

)N−1

. (13)

In what follows, we shall claim that the upper bound in (12)
is strictly larger than the upper bound in (13). If this assertion
is true, the maximum value of U∗

t (αt) occurs in Subcase 2.1,
and thus the proof is completed.

Observe that Nαt ≥ 1 due to the assumption D− t ≤ Nαt

and t ≤ D − 1, and observe that 1 − D−t
Nαt

< 1
D−t+1 < 1

Nαt

due to the assumption Nαt < D − t+ 1. Define

h(x) , x(1− αtx)
N−1, for x ∈

[
0,

1

Nαt

]
.

The derivative of h(x) is h′(x) = (1−Nαtx)(1− αtx)
N−2.

For the case N = 2, we have h′′(x) = −2x < 0. For the case
N > 2, we have

h′′(x) = −αt(2N − 2−N2αtx+Nαtx)(1− αtx)
N−3.

Let g(x) , 2N − 2 − N2αtx + Nαtx for x ∈ [0, 1
Nαt

]. We
have g′(x) = Nαt(1−N) < 0 for x ∈ (0, 1

Nαt
). So, g(x) is

strictly decreasing on [0, 1
Nαt

] and g(x) ≥ g( 1
Nαt

) = N−1 >

0 for x ∈ [0, 1
Nα ]. We further have h′′(x) = −αtg(x)(1 −

αtx)
N−3 < 0. Therefore, h(x) is strictly concave on [0, 1

Nαt
].

As 1 − D−t
Nαt

< 1
D−t+1 < 1

Nαt
, by the concavity of h(x)

and Jensen’s inequality, we have

1

D − t+ 1
h
(
1− D − t

Nαt

)
+

D − t

D − t+ 1
h
( 1

Nαt

)
< h

(
1

D − t+ 1

(
1− D − t

Nαt

)
+

D − t

D − t+ 1

( 1

Nαt

))
= h

( 1

D − t+ 1

)
,

and thus

1

D − t+ 1

(
1− αt

( 1

D − t+ 1

))N−1

>
1

D − t+ 1

(
1− D − t

Nαt

)(
1− αt

(
1− D − t

Nαt

))N−1

+
D − t

D − t+ 1

( 1

Nαt

)(
1− αt

( 1

Nαt

))N−1

.

Therefore, we have(
1− αt

D − t+ 1

)N−1

>
D − t

Nαt

(
1− 1

N

)N−1

+
(
1− D − t

Nαt

)(
1− αt

(
1− D − t

Nαt

))N−1

,

and then the result follows.
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